Extended Poincare supersymmetry, rotation groups and branching rules

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 192003
(http://iopscience.iop.org/0305-4470/19/11/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 17:40

Please note that terms and conditions apply.

Extended Poincaré supersymmetry, rotation groups and branching rules

M Yang \dagger and B G Wybourne
Department of Physics, University of Canterbury, Christchurch, New Zealand

Received 9 October 1985

Abstract

The decomposition of the basic spin irreps of the special orthogonal group $\mathrm{SO}_{2 k}$ into irreps of $\mathrm{SO}_{D-2} \times \mathrm{K}$, where D is the spacetime dimension of the extended D. dimensional Poincaré supersymmetry and K is the appropriate automorphism group, is determined. General results for $D \leqslant 10$ capable of extending decompositions of irreps giving rise to helicities greater than ± 2 are given together with a general method for $D>10$. Several new branching rules for subgroups of $\mathrm{SO}_{2 k}$ are developed. A number of specific results are tabulated.

1. Introduction

The even-dimensional rotation groups $\mathrm{SO}_{2 k}$ continue to find wide applications in physical problems. Important examples arise in the interacting boson model of nuclei (Arima and Iachello 1976), extended Poincaré supersymmetry (Strathdee 1985) and in superstring theories (Green and Schwarz 1984). The properties of the basic spin irreps of SO_{n} are of special significance. The analysis of the antisymmetric powers of a spin irrep is an important problem in supergravity theories (Curtright 1982a, b, Bergshoeff and de Roo 1982, 1984). A complete resolution of the second and third powers of the basic spin irrep of SO_{n} together with a prescription for analysing the fourth power of these irreps has been given (King et al 1981). A complete reduction of all antisymmetric powers of the basic spin irrep of SO_{10} has been derived (Black and Wybourne 1983).

The study of the properties of the even-dimensional rotation groups $\mathrm{SO}_{2 \mathrm{k}}$ is complicated by the occurrence of pairs of conjugate irreps that must be carefully distinguished at all stages. A compact description of the resolution of the Kronecker products of irreps of $\mathrm{SO}_{2 k}$ has been given (Black et al 1983). Branching rules for irreps of $\mathrm{SO}_{2 k}$ have in many cases been developed (King 1975, Black et al 1983, Black and Wybourne 1983). A method for $\mathrm{E}_{8} \downarrow \mathrm{SO}_{16}$ branching rules has also been given (Wybourne 1984).

In this paper we first give a complete resolution of all antisymmetric powers of the basic spin irreps of SO_{n} for $n \leqslant 10$. It then becomes possible to express any symmetrised power of the basic spin irreps for $n \leqslant 10$ as sums of products of the antisymmetrised powers. The symmetrised powers of the basic spin irreps, up to fourth power, are tabulated for $\mathrm{SO}_{n}(n \leqslant 10)$.

We next introduce a number of additional branching rules for important subgroups of $\mathrm{SO}_{2 k}$ drawing heavily upon the properties of Schur functions (King et al 1981, Black et al 1983).
\dagger On leave from: Department of Applied Physics, Beijing, Polytechnic University, Beijing, China.

Finally we examine the decomposition of the basic spin irreps of $\mathrm{SO}_{2 k}$ under the group-subgroup restriction $\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-2} \times \mathrm{K}$ where D is the spacetime dimension of the extended D-dimensional Poincaré supersymmetry and K is the automorphism group appropriate to D. This problem is of special significance in determining acceptable light-like representations. Group isomorphisms and automorphisms are exploited to give for $D \leqslant 10$ results that can readily be extended to any number of supercharges. A general method for cases with $D>10$ is sketched. A useful table of decompositions is included.

2. Symmetrised powers of basic spin irreps of SO_{n}

Let us designate the 2^{k}-dimensional basic spin irrep of $\mathrm{SO}_{2 k+1}$ by Δ and two inequivalent 2^{k-1}-dimensional basic spin irreps of $\mathrm{SO}_{2 k}$ by Δ_{+}and Δ_{-}(King et al 1981). The basic spin irreps Δ of $\mathrm{SO}_{2 k+1}$ are orthogonal if $2 k+1=1,7(\bmod 8)$ or symplectic if $2 k+1=$ $3,5(\bmod 8)$ while the basic spin irreps $\Delta_{ \pm}$of $\mathrm{SO}_{2 k}$ are orthogonal if $2 k=0(\bmod 8)$, symplectic if $2 k=4(\bmod 8)$ and complex if $2 k=2,6(\bmod 8)$.

In general the resolution of a symmetrised power of a basic spin irrep amounts to the evaluation of the spin plethysm (Littlewood 1947, 1948, 1950)

$$
\begin{array}{ll}
\Delta \otimes\{\lambda\} & n=2 k+1 \\
\Delta_{ \pm} \otimes\{\lambda\} & n=2 k \tag{1b}
\end{array}
$$

where for the p th power in $\Delta\left(\right.$ or $\left.\Delta_{ \pm}\right)(\lambda)$ is a partition of the integer p, i.e. $\lambda \vdash p$.
The evaluation of the spin plethysms in (1) is equivalent to evaluating the branching rule for the unitary group irrep $\{\lambda\}$ under the restriction

$$
\begin{equation*}
\mathrm{U}_{2^{k}} \downarrow \mathrm{SO}_{2 k+1} \quad \text { where }\{1\} \downarrow \Delta \tag{2a}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{U}_{2^{k-1}} \downarrow \mathrm{SO}_{2 k} \quad \text { where }\{1\} \downarrow \Delta_{+}\left(\text {or } \Delta_{-}\right) \tag{2b}
\end{equation*}
$$

where in ($2 b$) if $\{1\} \downarrow \Delta_{+}$then $\{\overline{1}\} \downarrow \Delta_{-}$. (In general we understand the irrep $\{\bar{\mu}\}$ of the unitary group to be contragradient to the irrep $\{\mu\}$.) The plethysms $\Delta \otimes\left\{1^{x}\right\}$ or $\Delta_{ \pm} \otimes\left\{1^{x}\right\}$ correspond to the reduction of an antisymmetric tensor $\left\{1^{x}\right\}$ under the appropriate rotation group.

Let us put $\alpha=2^{k}$ or 2^{k-1} according to whether we are concerned with $\mathrm{SO}_{2 k+1}$ or $\mathrm{SO}_{2 k}$ respectively. Suppose we take a set of α fermion fields spanning the basic spin irrep of $\mathrm{SO}_{n}(n=2 k+1$ or $2 k)$ and form all possible antisymmetric states. The total number of such states will be 2^{α} and the complete set of antisymmetric states will span the vector irrep $\{1\}$ of U_{2}.

Under $\mathrm{U}_{2^{a}} \downarrow \mathrm{SO}_{2 \alpha+1}$ we find (Wybourne 1973, 1974)

$$
\begin{equation*}
\{1\} \downarrow \Delta . \tag{3}
\end{equation*}
$$

Further restriction to $\mathrm{SO}_{2 \alpha}$ gives

$$
\begin{equation*}
\Delta \downarrow \Delta_{+}+\Delta_{--} \tag{4}
\end{equation*}
$$

Restriction to the subgroup $\mathrm{SU}_{\alpha} \times \mathrm{U}_{1}$ then leads to (Black and Wybourne 1983)

$$
\begin{equation*}
\Delta_{ \pm} \downarrow \sum_{s_{ \pm}}\left\{1^{\alpha-s_{ \pm}}\right\} \times\left\{\frac{1}{2} \alpha-s_{ \pm}\right\} \quad \alpha \geqslant s_{ \pm} \tag{5}
\end{equation*}
$$

where the + or $-\operatorname{sign}$ is taken right through as appropriate and $s_{+}\left(s_{-}\right)$are even (odd) integers.

The group SU_{α} may be further restricted by considering whether the basic spin irrep Δ or $\Delta_{ \pm}$of SO_{n} is orthogonal, symplectic or complex leading to the group structures listed in table 1 for $n \geqslant 5$.

Table 1. Group-subgroup structures for the set of antisymmetrised powers of a basic spin irrep of $\mathrm{SO}_{n}(n \geqslant 5)$.

$$
\begin{array}{ll}
n=0,1,7(\bmod 8) & \mathrm{U}_{2^{\alpha}} \supset \mathrm{SO}_{2 \alpha+1} \supset \mathrm{SO}_{2 \alpha} \supset\left[\mathrm{SU}_{\alpha} \supset \mathrm{SO}_{\alpha} \supset \mathrm{SO}_{n}\right] \times \mathrm{U}_{1} \\
n=3,4,5(\bmod 8) & \mathrm{U}_{2^{a}} \supset \mathrm{SO}_{2 \alpha+1} \supset \mathrm{SO}_{2 \alpha} \supset\left[\mathrm{SU}_{\alpha} \supset \mathrm{Sp}_{\alpha} \supset \mathrm{SO}_{n}\right] \times \mathrm{U}_{1} \\
n=2,6(\bmod 8) & \mathrm{U}_{2^{\alpha}} \supset \mathrm{SO}_{2 \alpha+1} \supset \mathrm{SO}_{2 \alpha} \supset\left[\mathrm{SU}_{\alpha} \supset \mathrm{SO}_{n}\right] \times \mathrm{U}_{1}
\end{array}
$$

For $n \leqslant 6$ it is useful to exploit the properties of the locally isomorphic sets of groups

$$
\begin{align*}
& \mathrm{SO}_{2} \sim \mathrm{U}_{1} \tag{6a}\\
& \mathrm{SU}_{2} \sim \mathrm{SO}_{3} \sim \mathrm{Sp}_{2} \tag{6b}\\
& \mathrm{SO}_{4} \sim \mathrm{SU}_{2} \times \mathrm{SU}_{2} \sim \mathrm{SO}_{3} \times \mathrm{SO}_{3} \sim \mathrm{Sp}_{2} \times \mathrm{Sp}_{2} \tag{6c}\\
& \mathrm{Sp}_{4} \sim \mathrm{SO}_{5} \tag{6d}\\
& \mathrm{SO}_{6} \sim \mathrm{SU}_{4} \tag{6e}
\end{align*}
$$

and the representation correspondences

$$
\begin{align*}
& {[a] \sim\{a\}} \tag{7a}\\
& \{a\} \sim[a / 2] \sim\langle a\rangle \tag{7b}\\
& {[a, b] \sim\{a+b\} \times\{a-b\} \sim[(a+b) / 2] \times[(a-b) / 2] \sim\langle a+b\rangle \times\langle a-b\rangle} \tag{7c}\\
& \langle a, b\rangle \sim[(a+b) / 2,(a-b) / 2] \tag{7d}\\
& {[a b c] \sim\{a+b, a-c, b-c\}} \tag{7e}
\end{align*}
$$

The three-index outer automorphism of SO_{8} is such that (Littlewood 1948)
$[a b c d] \sim\left[\frac{1}{2}(a+b+c+d), \frac{1}{2}(a+b-c-d), \frac{1}{2}(a-b+c-d), \frac{1}{2}(-a+b+c-d)\right]$
leading for example to

$$
\begin{equation*}
\Delta_{+} \sim[1] \sim \Delta_{-} \sim \Delta_{+} . \tag{9}
\end{equation*}
$$

Thus the automorphism applied to Δ_{+}yields the vector irrep of SO_{8}. Two further applications of \sim yields the original irrep. We shall designate two successive automorphisms by the symbol \sim " noting that
$[a, b, c, d] \sim "\left[\frac{1}{2}(a+b+c-d), \frac{1}{2}(a+b-c+d), \frac{1}{2}(a-b+c+d), \frac{1}{2}(a-b-c-d)\right]$.
The above results together with those given by King et al (1981) and the Kronecker product results of Black et al (1983) readily lead to the resolution of the antisymmetrised powers of the basic spin irreps of SO_{n} for $n \leqslant 10$. A method of evaluating the corresponding powers for SO_{11} has been given (Black and Wybourne 1983) but the results are too voluminous to present here. In the case of $n=2 k$ it is only necessary
to list the results up to $\Delta_{+} \otimes\left\{1^{k}\right\}$ due to the involutary outer automorphism \dagger for $\mathrm{SO}_{2 k}$ which gives

$$
\begin{equation*}
\Delta_{+} \otimes\left\{1^{2 k-x}\right\}=\left(\Delta_{+} \otimes\left\{1^{x}\right\}\right)^{+} \tag{10}
\end{equation*}
$$

recalling that under \dagger

$$
\begin{equation*}
\left([\lambda]_{ \pm}\right)^{+}=[\lambda]_{\mp} . \tag{11}
\end{equation*}
$$

For $\mathrm{SO}_{2 k+1}$ we have the equivalence

$$
\begin{equation*}
\Delta \otimes\left\{1^{2 k+1-x}\right\}=\Delta \otimes\left\{1^{x}\right\} . \tag{12}
\end{equation*}
$$

The results for $n \leqslant 10$ are collected together in table 2. The symmetrised powers, up to power four, of the basic spin irreps of SO_{n} with $n \leqslant 10$ are given in table 3 .

Table 2. Antisymmetrised nth powers of the basic spin irreps of $\mathrm{SO}_{n}(n \leqslant 10)$.

N	SO_{2}	SO_{4}	SO_{6}	SO_{8}	SO_{10}
1	Δ_{+}	$\begin{aligned} & \Delta_{+} \\ & {[0]} \end{aligned}$	$\begin{aligned} & \Delta_{+} \\ & {[1]} \\ & \Delta_{-} \\ & {[0]} \end{aligned}$	Δ_{+}	Δ_{+}
2				[1^{2}]	[1 ${ }^{3}$]
3				[$\Delta, 1]_{-}$	[$\left.\Delta ; 1^{2}\right]_{-}$
4				$[2]+\left[1^{4}\right]_{-}$	$\left[2^{2}\right]+\left[21^{4}\right]$ -
5				$[\Delta ; 1]_{+}$	$[\Delta ; 21]_{-}+\left[\Delta ; 1^{5}\right]_{-}$
6				[1^{2}]	$\left[2^{2} 1^{3}\right]_{-}+\left[31^{2}\right]$
7				Δ_{-}	$\left[\Delta ; 21^{2}\right]_{-}+[\Delta ; 3]_{+}$
8				[0]	$[4]+\left[2^{3}\right]+\left[31^{3}\right]$
N	SO_{3}	SO_{5}			SO_{9}
1	Δ	Δ	Δ		Δ
2	[0]	[1] + [0]			$\left[1^{3}\right]+\left[1^{2}\right]$
3		Δ			$\left[\Delta ; 1^{2}\right]+[\Delta ; 1]$
4		[0]		$]+[1]+[0]$	$\left[21^{3}\right]+\left[1^{4}\right]+\left[2^{2}\right]+[21]+[2]$
5					$[\Delta ; 21]+[\Delta ; 2]+\left[\Delta ; 1^{4}\right]+\left[\Delta ; 1^{2}\right]+(\Delta ; 1]$
6					$\begin{aligned} & {\left[2^{2} 1^{2}\right]+\left[21^{3}\right]+\left[31^{2}\right]+[31]+\left[21^{2}\right]+[21]} \\ & +\left[1^{3}\right]+\left[1^{2}\right] \end{aligned}$
7			Δ		$\begin{aligned} & {[\Delta ; 3]+\left[\Delta ; 21^{2}\right]+[\Delta ; 21]+[\Delta ; 2]+\left[\Delta ; 1^{3}\right]} \\ & +\left[\Delta ; 1^{2}\right]+[\Delta ; 1]+\Delta \end{aligned}$
8					$\begin{aligned} & {[4]+\left[31^{3}\right]+\left[31^{2}\right]+[3]+\left[2^{3}\right]+\left[2^{2} 1\right]+\left[2^{2}\right]} \\ & +\left[21^{3}\right]+\left[21^{2}\right]+[2]+\left[1^{4}\right]+\left[1^{3}\right]+[1]+[0] \end{aligned}$

3. Branching rules for subgroups of SO_{n}

Morris (1958, 1961) has given results for the decomposition of the basic spin irreps for the group-subgroup combinations

$$
\begin{aligned}
& \mathrm{SO}_{4 r s} \supset \mathrm{SO}_{2 r} \times \mathrm{SO}_{2 s} \\
& \mathrm{SO}_{4 r s+2 s} \supset \mathrm{SO}_{2 r+1} \times \mathrm{SO}_{2 s} \\
& \mathrm{SO}_{4 r s+2 r+2 s+1} \supset \mathrm{SO}_{2 r+1} \times \mathrm{SO}_{2 s+1}
\end{aligned}
$$

while King (1975) gave equivalent results for the full orthogonal groups and for $\mathrm{O}_{4 \mathrm{rs}} \supset \mathrm{Sp}_{2 r} \times \mathrm{Sp}_{2 s}$. Black and Wybourne (1983) have also given results for a number

Table 3. Symmetrised powers of basic spin irreps of SO_{n}.

$n=2 k$	SO_{4}	SO6	SO_{8}	SO_{10}
$\Delta_{+} \otimes\{2\}$	$\left[1^{2}\right]_{+}$	$\left[1^{3}\right]_{+}$	$\left[1^{4}\right]_{+}+[0]$	$\left[1^{5}\right]_{+}+[1]$
$\Delta_{+} \otimes\left\{1^{2}\right\}$	[0]	[1]	[12]	[13]
$\Delta_{+} \otimes\{3\}$	[$\left.{ }^{\text {; }} 1\right]_{+}$	$\left[\Delta ; 1^{3}\right]_{+}$	$\left[\Delta_{;} 1^{4}\right]_{+}+\Delta_{+}$	$\left[\Delta ; 1^{5}\right]_{+}+[\Delta ; 1]_{+}$
$\Delta_{+} \otimes\{21\}$	Δ_{+}	[$4 ; 1]_{+}$	$\left[\Delta ; 1^{2}\right]_{+}+\Delta_{+}$	$\left[\Delta ; 1^{3}\right]_{+}+[\Delta ; 1]_{+}+\Delta_{-}$
$\Delta_{+} \otimes\left\{1^{3}\right\}$	-	Δ_{-}	[4 ; 1]	[$\left.1 ; 1^{2}\right]^{2}$
$\Delta_{+} \otimes\{4\}$	$\left[2^{2}\right]_{+}$	$\left[2^{3}\right]_{+}$	$\left[2^{4}\right]_{+}+\left[1^{4}\right]_{+}+[0]$	$\left[2^{5}\right]_{+}+\left[21^{4}\right]_{+}+[2]$
$\Delta_{+} \otimes\{31\}$	$\left[1^{2}\right]_{+}$	$\left[21^{2}\right]_{+}$	$\left[2^{2} 1^{2}\right]_{+}+\left[1^{4}\right]_{+}+\left[1^{2}\right]$	$\left[2^{3} 1^{2}\right]_{+}+\left[21^{4}\right]_{+}+\left[21^{2}\right]+\left[1^{4}\right]_{+}$
$\Delta_{+} \otimes\left\{2^{2}\right\}$	[0]	[2]	$\left[2^{2}\right]+\left[1^{4}\right]_{+}+[0]$	$\left[2^{3}\right]+\left[24^{4}\right]_{+}+[2]+\left[1^{4}\right]+[0]$
$\Delta_{+} \otimes\left\{21^{2}\right\}$	-	[12]	$\left[21^{2}\right]+\left[1^{2}\right]$	$\left[2^{2} 1^{2}\right]+\left[21^{2}\right]+\left[1^{4}\right]+\left[1^{2}\right]$
$\Delta_{+} \otimes\left\{1^{4}\right\}$	-	[0]	$[2]+\left[1^{4}\right]$ -	$\left[2^{2}\right]+\left[21^{4}\right]$ -
$n=2 k+1$	SO_{3}	SO_{5}	SO_{7}	SO_{9}
$\Delta \otimes\{2\}$	[1]	[1^{2}]	$\left[1^{3}\right]+[0]$	$\left[1^{4}\right]+[1]+[0]$
$\Delta \otimes\left\{1^{2}\right\}$	[0]	[1] + [0]	$\left[1^{2}\right]+[1]$	$\left[1^{2}\right]+[1]$
$\Delta \otimes\{3\}$	[4 ; 1]	[$4 ; 1^{2}$]	$\left[\Delta ; 1^{3}\right]+\Delta$	$\left[\Delta ; 1^{4}\right]+[\Delta ; 1]+\Delta$
$\Delta \otimes\{21\}$	Δ	$[\Delta ; 1]+\Delta$	$\left[\Delta ; 1^{2}\right]+[\Delta ; 1]+\Delta$	$\left[\Delta ; 1^{3}\right]+\left[\Delta ; 1^{2}\right]+[\Delta ; 1]+2 \Delta$
$\Delta \otimes\left\{1^{3}\right\}$	-	Δ	$[\Delta ; 1]+\Delta$	$\left[\Delta ; 1^{2}\right]+[\Delta ; 1]$
$\Delta \otimes\{4\}$	[2]	[2^{2}]	$\left[2^{3}\right]+\left[1^{3}\right]+[0]$	$\left[2^{4}\right]+\left[21^{3}\right]+[2]+\left[1^{4}\right]+[1]+[0]$
$\Delta \otimes\{31\}$	[1]	$[21]+\left[1^{2}\right]$	$\left[2^{2} 1\right]+\left[21^{2}\right]+\left[1^{3}\right]$	$\left[2^{3} 1\right]+\left[2^{2} 1^{2}\right]+\left[21^{3}\right]+\left[21^{2}\right]+[21]$
			$+\left[1^{2}\right]+[1]$	$+2\left[1^{4}\right]+2\left[1^{3}\right]+2\left[1^{2}\right]+[1]$
$\Delta \otimes\left\{2^{2}\right\}$	[0]	$[2]+[1]+[0]$	$\left[2^{2}\right]+[21]+[2]$	$\left[2^{3}\right]+\left[2^{2} 1\right]+\left[2^{2}\right]+\left[21^{3}\right]+[2]$
			$+\left[1^{3}\right]+[0]$	$+2\left[1^{4}\right]+\left[1^{3}\right]+[1]+2[0]$
$\Delta \otimes\left\{21^{2}\right\}$	-	$\left[1^{2}\right]+[1]$	$\left[21^{2}\right]+[21]+\left[1^{3}\right]$	$\left[2^{2} 1^{2}\right]+\left[2^{2} 1\right]+\left[21^{3}\right]+2\left[21^{2}\right]$
			$+2\left[1^{2}\right]+[1]$	$+[21]+\left[1^{4}\right]+2\left[1^{3}\right]+2\left[1^{2}\right]+[1]$
$\Delta \otimes\left\{1^{4}\right\}$	-	[0]	$[2]+\left[1^{3}\right]+[1]+[0]$	$\left[2^{2}\right]+\left[21^{3}\right]+[21]+[2]+\left[1^{4}\right]$

of subgroups for $\mathrm{SO}_{2 k}$. King's results may be extended to the special orthogonal group SO_{n}. For $n=2 k$ it is necessary to make use of the theory of difference characters (Murnaghan 1983, Littlewood 1950, Butler and Wybourne 1969). In deriving our results we make extensive use of the properties of the infinite S-function series A, B, C, \ldots, defined elsewhere (Black et al 1983). We use ω_{ζ} to denote the sum of parts of a partition (ζ) and use $\zeta_{+}\left(\zeta_{-}\right)$to stand for any S function with ω_{ζ} even (odd).

The relevant results are collected together in table 4. The format of these tables follows that of Black and Wybourne (1983). The results for the decomposition of the basic spin irreps are of crucial importance in establishing our subsequent results. Note that in each case the embedding is specified by the assumed decomposition of the vector irrep [1].

4. Branching rules for the extended \boldsymbol{D}-dimensional Poincaré supersymmetry

The connection between Clifford and Lie algebras is well known. The Clifford algebra C_{k} contains the important Lie subalgebras

$$
\mathrm{C}_{k} \supset \mathrm{SO}_{2 k+1} \supset \mathrm{SO}_{2 k} .
$$

The 2^{k}-dimensional vector space on which C_{k} acts is irreducible under $\mathrm{SO}_{2 k+1}$ and separates into two inequivalent 2^{k-1}-dimensional irreps under $\mathrm{SO}_{2 k}$. The restriction

Table 4. Branching rules for SO_{n}.
$\mathrm{SO}(4 r s) \downarrow \mathrm{Sp}(2 r) \times \mathrm{Sp}(2 s)$

[1]	(1) \times <1 ${ }^{\text {d }}$
Δ	$\sum\left(s^{\prime} / \zeta\right) \times(\hat{\zeta})$
$\Delta^{\prime \prime}$	$\sum_{\zeta}(-1)^{\omega_{\zeta}\left(\left\langle s^{\prime} / \zeta\right) \times\langle\tilde{\zeta}\rangle\right.}$
$\Delta_{ \pm}$	$\sum_{\zeta \pm}\left\langle s^{*} / \zeta_{ \pm}\right\rangle \times\left\langle\tilde{\zeta}_{ \pm}\right\rangle \quad$ ($\zeta_{ \pm}$is partition of even (odd) weight)
[λ]	$\sum\langle((\lambda / C) \circ \eta) / B\rangle \times\langle\eta / B\rangle$
\square	$\sum_{\eta \sim 2 r s}\langle\eta / B\rangle \times\langle\tilde{\eta} / B\rangle$
口"	$\sum_{\text {, , , , }, \tau}(-1)^{\omega}\left\langle\left\langle\left(s^{\prime} / \zeta \sigma\right) \cdot\left(s^{\tau} / \eta \sigma\right)\right\rangle\langle(\tilde{\zeta} / \tau) \cdot(\tilde{\eta} / \tau)\rangle\right.$
$\square_{ \pm}$	$\begin{aligned} & \sum_{\zeta_{ \pm}, \eta_{ \pm}, \sigma, \tau}\left\langle\left(s^{r} / \zeta_{ \pm} \sigma\right) \cdot\left(s^{r} / \eta_{ \pm} \sigma\right)\right\rangle \times\left(\left(\tilde{\zeta}_{ \pm} / \tau\right) \cdot\left(\tilde{\eta}_{ \pm} / \tau\right)\right\rangle \\ & -\sum_{\eta-2 r s-2-m, m}(\eta / B\rangle \times\langle\tilde{\eta} / B\rangle \quad(m \text { is positive integer }) \end{aligned}$
$[\Delta ; \lambda]$	$\sum_{\zeta, n, c_{,} \tau}\left\langle\left(s^{\tau} / \zeta \sigma\right) \cdot(((\lambda / E) \circ \eta) / B \sigma)\right\rangle \times\langle(\tilde{\zeta} / \tau) \cdot(\eta / B \tau)\rangle$
$[\Delta ; \lambda]^{\prime \prime}$	$\left.\sum_{\zeta, n, \sigma, \tau}(-1)^{\omega} \zeta\left(\left(s^{\tau} / \zeta \sigma\right) \cdot(((\lambda / G) \circ \eta) / B \sigma)\right) \times\langle\tilde{\zeta} / \tau) \circ(\eta / B \tau)\right\rangle$
$[\Delta ; \lambda]_{ \pm}$	
$[\square, \lambda]^{\prime \prime}$	$\left.\left.\sum_{\zeta, \eta, \rho, \sigma, \tau, \nu, \theta}(-1) \omega_{\nabla}\right\rangle\left(\left(\left(s^{\prime} / \zeta \sigma\right) \cdot\left(s^{5} / \eta \sigma\right)\right) / \nu\right) \cdot(((\lambda / A) \circ \rho) / B \nu)\right) \times((((\zeta / \tau) \cdot(\tilde{\eta} / \tau)) / \theta) \cdot(\rho / B \theta))$

$\mathrm{SO}(4 r s+2 r+2 s+1) \downarrow \mathrm{SO}(2 r+1) \times \mathrm{SO}(2 s+1)$

$[1]$	$[1] \times[1]$
Δ	$\sum_{\zeta}\left[\Delta ; s^{r} / \zeta\right] \times[\Delta ; \tilde{\xi}]$
$[\lambda]$	$\sum_{\eta}^{\eta}[((\lambda / C) \circ \eta) / D] \times[\eta / D]$
$[\Delta ; \lambda]$	$\sum_{\zeta \eta, \sigma \tau}\left[\Delta ;\left(s^{\prime} / \zeta \sigma\right) \cdot(((\lambda / E) \circ \eta) / F \sigma)\right] \times[\Delta ;(\tilde{\zeta} / \tau):(\eta / F \tau)]$

$\mathrm{SO}(4 r s+2 s) \downarrow \mathrm{SO}(2 r+1) \times \mathrm{SO}(2 s)$
[1] [1] $\times[1]$
$\Delta \quad \sum_{\varepsilon}\left[s^{\prime} / \zeta\right] \times[\Delta ; \xi]$
$\Delta^{\prime \prime} \quad \sum_{\zeta}(-1)^{\omega_{s}}\left[s^{r} / \zeta\right] \times[\Delta ; \tilde{\xi}]^{\prime \prime}$
$\Delta_{ \pm} \quad \sum_{\zeta}\left[s^{r} / \zeta\right] \times[\Delta ; \tilde{\zeta}]_{ \pm(-)}{ }^{\omega_{G}}$
[$] \quad \sum_{\eta}[((\lambda / C) \circ \eta) / D] \times[\eta / D]$
$\square \quad \sum_{\eta-2 r s+s}[\eta / D] \times[\tilde{\eta} / D]$
$\square^{\prime \prime} \quad \sum_{m, \zeta, n, \sigma, \tau}(-1)^{\omega}\left[\left[\left(s^{r} / \eta \sigma\right) \cdot\left(s^{r} / \zeta \sigma\right)\right] \times[\square ;(\tilde{\eta} / \tau Q) \cdot(\tilde{\zeta} / \tau L)]^{\prime \prime}\right.$
$\square_{=} \quad \sum_{\zeta, \eta, \pi, \rho}\left[\left(s^{\prime} / \zeta \sigma\right) \cdot\left(s^{\prime} / \eta \sigma\right)\right] \times\left[\tilde{r} ;(\tilde{\zeta} / \rho \tau B) \cdot(\tilde{\eta} / \rho) \cdot Q_{ \pm(-)} \omega_{\zeta}+s\right]_{(-), \omega_{\eta}}$
$-\sum_{m, \eta-2, s+s-2-2 m}[\eta / D][\tilde{\eta} / D]$
$[\Delta, \lambda]$
$\sum_{\zeta, \eta, \sigma, r, \theta}\left[\left(s^{r} / \zeta \sigma\right) \cdot(((\lambda / E) \circ \eta) / D \sigma)\right] \times[\Delta ;(\tilde{\zeta} / \theta) \cdot(\eta / F \theta)]$

Table 4. (continued)
$\mathrm{SO}(4 r s+2 s) \downarrow \mathrm{SO}(2 r+1) \times \mathrm{SO}(2 s)$

$[\Delta, \lambda]^{\prime \prime}$	$\sum_{\zeta, \eta, \sigma, r, \theta}(-1)^{\omega}\left[\left[\left(s^{\prime} / \tilde{\zeta} \sigma\right) \cdot(((\lambda / G) \circ \eta) / D \sigma)\right] \times[\Delta ;(\tilde{\zeta} / \theta) \cdot(\eta / H \theta)]\right.$
$[\Delta, \lambda]_{ \pm}$	$\left.\sum_{m, \eta, \xi, \eta, \sigma ; \tau ; \theta}(-1)^{m}\left[\left(s^{r} / \zeta \sigma\right) \cdot(((\lambda / C m) \circ \eta) / D)\right] \times\left[\Delta ;(\tilde{\xi} / \theta) \cdot\left(\eta / D 1^{n} \theta\right)\right]_{ \pm(-)}\right)_{\sigma_{s}+m+n}$
$[\Delta, \lambda]^{\prime \prime}$	$\sum_{\zeta, \eta, \sigma, \tau, \theta, \rho}(-1)^{\omega_{\zeta}\left[\left(\left(\left(s^{r} / \eta \sigma\right) \cdot\left(s^{r} / \zeta \sigma\right)\right) / \theta\right) \cdot(((\lambda / A) \circ \eta) / D \theta)\right]}$
	$\times[\square ;(((\tilde{\eta} / \tau Q) \cdot(\tilde{\zeta} / \tau L)) / \rho) \cdot(\eta / B \rho)]^{\prime \prime}$

$\mathrm{SO}(4 r s) \downarrow \mathrm{SO}(2 r) \times \mathrm{SO}(2 s)$

[1]	[1] \times [1]
Δ	$\sum_{\zeta}\left[s^{\prime} / \zeta\right] \times\left[\tilde{j}^{\text {c }}\right]$
$\Delta^{\prime \prime}$	$\sum_{\xi}(-1)^{\omega} \leqslant\left[s^{\prime} / \zeta\right] \times[\tilde{\xi}]$
$\Delta_{ \pm}$	$\sum_{\xi \pm}\left[s^{\prime} / \zeta_{ \pm}\right] \times\left[\tilde{\xi}_{ \pm}\right]$
[λ]	$\sum_{\eta}[((\lambda / C) \circ \eta) / D] \times[\eta / D]$
\square	$\sum_{\eta \vdash 2 r s}[\eta / D] \times[\tilde{\eta} / D]$
$\square{ }^{\prime \prime}$	$\sum_{\zeta, \eta, \sigma, \tau}(-1)^{\omega_{n}}\left[\left(s^{\prime} / \zeta \sigma\right) \cdot\left(s^{r} / \eta \sigma\right)\right] \times[(\tilde{\zeta} / \tau) \cdot(\tilde{\eta} / \tau)]$
$\square_{ \pm}$	$\begin{aligned} & \sum_{\zeta_{x}, \eta_{x}, \sigma, r}\left[\left(s^{r} / \zeta_{ \pm} \sigma\right) \cdot\left(s^{r} / \eta_{ \pm} \sigma\right)\right] \times\left[\left(\tilde{\zeta}_{ \pm} / \tau\right) \cdot\left(\dot{\eta}_{ \pm} / \tau\right)\right]-\sum_{\eta-2, s-2-m, m}[\eta / D] \times[\tilde{\eta} / D] \\ & (m \text { is positive integer }) \end{aligned}$
$[\Delta ; \lambda]$	$\left.\sum_{\zeta, \eta, \sigma, \tau}\left[\left(s^{r} / \zeta \sigma\right) \cdot(((\lambda / E) \circ \eta) / D \sigma)\right] \times[\tilde{\zeta} / \tau) \cdot(\eta / D \tau)\right]$
$[\Delta ; \lambda]^{\prime \prime}$	$\sum_{\zeta, n, \sigma, \tau}(-1)^{\omega_{i}}\left[\left(s^{\tau} / \zeta \sigma\right) \cdot(((\lambda / G) \circ \eta) / D \sigma)\right] \times[(\tilde{\zeta} / \tau) \cdot(\eta / D \tau)]$
$[\boldsymbol{\Delta} ; \lambda]_{ \pm}$	$\left.\left.\sum_{m, \zeta_{ \pm-1}, m, n, \sigma, \tau}(-1)^{m}\left[\left(s^{\tau} / \zeta_{ \pm(-,}\right)^{m \sigma}\right) \cdot(((\lambda / C m) \circ \eta) / \sigma D)\right] \times\left[\left(\zeta_{ \pm(-)}\right)^{m / \tau}\right) \cdot(\eta / D \tau)\right]$
[$\square ; 1]$	$\begin{aligned} & \sum_{\zeta \cdot,, \rho, \sigma, \nu,,, \theta}(-1)^{\omega_{n}}\left[\left(\left(\left(s^{r} / \zeta \sigma\right) \cdot\left(s^{r} / \eta \sigma\right)\right) / \nu\right) \cdot(((\lambda / A) \circ \rho) / D \nu)\right] \\ & \times[((\tilde{\zeta} / \tau) \cdot(\tilde{\eta} / \tau)) / \theta) \cdot(\rho / D \theta)] \end{aligned}$

$\mathrm{SO}_{2 k+1} \downarrow \mathrm{SO}_{2 k}$ again leads to

$$
\begin{equation*}
\Delta \downarrow \Delta_{+}+\Delta \tag{13}
\end{equation*}
$$

The irreps $\Delta_{ \pm}$of $\mathrm{SO}_{2 k}$ may be further reduced by the action of subgroups of $\mathrm{SO}_{2 k}$. Strathdee (1985) has shown that for the extended D-dimensional Poincaré supersymmetry the group-subgroup structure

$$
\begin{equation*}
\mathrm{SO}_{2 k} \supset \mathrm{SO}_{D-2} \times \mathrm{K} \tag{14}
\end{equation*}
$$

is of special significance in determining acceptable light-like representations. The choice of K is dictated by D. The group K is the automorphism group (or bosonic little group) which treats the supercharges $Q_{j}(j=1, \ldots, N)$ as an N vector.

We let $Q_{1 / 2}$ represent a set of real supercharges with $2 k$ real components. This set generates the 2^{k}-dimensional Clifford algebra. The $Q_{1 / 2}$ span the vector irrep [1] of $\mathrm{SO}_{2 k}$. Under the restriction $\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-2} \times \mathrm{K}$ they span the basic spin irreps of SO_{D-2}
and the vector irreps of K . The relevant decompositions for the vector irrep [1] of $\mathrm{SO}_{2 k}$ are listed in table 5 along with the relevant group-subgroup structures.

The decomposition of the vector irrep [1] of $\mathrm{SO}_{2 k}$ fixes the group-subgroup embedding and leaves the corresponding decompositions for the basic spin irreps $\Delta_{ \pm}$ of $\mathrm{SO}_{2 k}$ to be determined.

Table 5. Decomposition of the vector irrep [1] of $\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-2} \times \mathrm{K}$.

$D=0,4(\bmod 8)$	$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D_{-2}} \times \mathrm{SU}_{N} \times \mathrm{U}_{1}$	$2 k=2^{(D-2) / 2} N$
	$[1] \downarrow \Delta_{+} \times\{1\} \times\{1\}+\Delta \times\{\overline{1}\} \times\{\overline{1}\}$	
$D=1,3(\bmod 8)$	$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-2} \times \mathrm{SO}_{N}$	$2 k=2^{(D-3) / 2} N$
	$[1] \downarrow \Delta \times[1]$	
$D=5,7(\bmod 8)$	$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D_{-2}} \times \mathrm{Sp}_{N}$	$2 k=2^{(D-3) / 2} N$
	$[1] \downarrow \Delta \times\langle 1\rangle$	
$D=2(\bmod 8)$	$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D_{-2} \times \mathrm{SO}_{N_{+}} \times \mathrm{SO}_{N}}$	$2 k=2^{(D-4) / 2}\left(N_{+}+N_{-}\right)$
	$[1] \downarrow \Delta_{+} \times[1] \times[0]+\Delta_{-} \times[0] \times[1]$	
	$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D_{-2} \times \mathrm{SO}_{N}}$	
	$[1] \downarrow \Delta_{+} \times[1]$	
	$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-2} \times \mathrm{Sp}_{N_{+}} \times \mathrm{Sp}_{N_{-}}$	$2 k=2^{(D-4) / 2}\left(N_{+}+N_{-}\right)$
	$[1] \downarrow \Delta_{+} \times\langle 1) \times\langle 0\rangle+\Delta_{-} \times(0) \times(1)$	
	$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D_{-2} \times \mathrm{Sp}_{N}}$	
	$[1] \downarrow \Delta_{+} \times(1\rangle$	

For $D=0,4(\bmod 8)$ the required general result may be readily found by noting the equivalent group decompositions

leading to

$$
\begin{align*}
& D=0,4(\bmod 8) \quad 2 k=2^{(D-2) / 2} N \\
& \mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-2} \times \mathrm{SU}_{N} \times \mathrm{U}_{1} \\
& \Delta_{ \pm} \downarrow \sum_{s_{ \pm}} \sum_{\rho \vdash s_{ \pm}}\left[\Delta_{+} \otimes\{\rho\}\right] \times\{\tilde{\rho}\} \times\left\{s_{ \pm}-k / 2\right\} \tag{16}
\end{align*}
$$

Use may be made of (10) to restrict the values of $s_{ \pm} \leqslant k$. Equation (16) simplifies for $D=4$ and 8 . For $D=4$ we have

$$
\begin{align*}
& \mathrm{SO}_{2 N} \downarrow \mathrm{SO}_{2} \times \mathrm{SU}_{N} \times \mathrm{U}_{1} \\
& \Delta_{ \pm} \downarrow \sum_{s_{ \pm}}\left[s_{ \pm}\right]_{+} \times\left\{1^{s} \times\right\} \times\left\{s_{ \pm}-N / 2\right\} \tag{17}
\end{align*}
$$

while for $D=8$ exploitation of the local isomorphism $\mathrm{SO}_{6} \sim \mathrm{SU}_{4}$ leads to

$$
\begin{align*}
& \mathrm{SO}_{8 N} \downarrow \mathrm{SO}_{6} \times \mathrm{SU}_{N} \times \mathrm{U}_{1} \\
& \Delta_{ \pm} \downarrow \sum_{s_{ \pm}}^{4 N} \sum_{\rho \vdash s_{ \pm}}^{\dot{C}}[\{\rho\}] \times\{\tilde{\rho}\} \times\left\{s_{ \pm}-2 N\right\} \tag{18}
\end{align*}
$$

where no part of (ρ) exceeds N nor does the number of parts of (ρ) exceed 4 and

$$
\begin{equation*}
\left\{\rho_{1} \rho_{2} \rho_{3} \rho_{4}\right\} \equiv\left\{\rho_{1}-\rho_{4}, \rho_{2}-\rho_{4}, \rho_{3}-\rho_{4}, 0\right\} \quad \rho_{4} \neq 0 \tag{19}
\end{equation*}
$$

The above restrictions limit $\{\rho\}$ to standard inequivalent irreps of SU_{4} involving not more than three parts which may be transcribed into the appropriate SO_{6} irrep labels using ($7 e$).

Using the branching rules of table 4 together with the isomorphisms and automorphisms discussed in $\S 2$ it was possible to obtain general results for $D=4$ to 10 as given in table 6. Note that for $D=6$ the summation $\Sigma_{s_{ \pm}^{+}, s_{+}^{-}}$is to be understood as first being made over (s_{+}^{+}, s_{+}^{-}) and then over (s_{-}^{+}, s_{-}^{-}) while for $\Sigma_{s_{ \pm}^{+}, s_{\mp}^{-}}$the sum is first made over (s_{+}^{+}, s_{-}^{-}) and then over (s_{-}^{+}, s_{+}^{-}) where $s_{ \pm}^{+} \leqslant n_{+}$and $s_{ \pm}^{-} \leqslant n_{-}$and as usual s_{+}refers to even integers and s_{-}to odd integers. For $D=7[\langle\lambda\rangle]$ is first evaluated in Sp_{4} and then transcribed as a SO_{5} irrep label using (7d). Finally in the case of $D=10$ we note the presence of the \sim " symbol which must be applied to each SO_{8} irrep that arises in the summations. The case of $D=9$ can be found from those of $D=10$ by making use of the fact that under $\mathrm{SO}_{8} \downarrow \mathrm{SO}_{7}, \Delta_{+} \downarrow \Delta$. Some detailed results are given in table 7 .

Table 6. Branching rules for the basic spin irreps of $\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-2} \times \mathrm{K}$.

$D=4$	$\mathrm{SO}_{2 \mathrm{~N}}$			
	$\Delta_{ \pm}$	$\downarrow \sum_{s_{ \pm}}^{N}\left[s_{ \pm}\right]_{+} \times\left\{1^{s_{ \pm}}\right\} \times\left\{s_{ \pm}-N / 2\right\}$		
$D=5$	$\mathrm{SO}_{4 n}$	$\downarrow \mathrm{SO}_{3} \times \mathrm{Sp}_{2 n}$		$N=2 n$
	$\Delta_{ \pm}$	$\downarrow \sum_{s_{ \pm}}^{n}\left[\left(n-s_{ \pm}\right) / 2\right] \times\left\langle 1^{s} \Rightarrow\right\rangle$		
$D=6$	$\mathrm{SO}_{4 n}$	$\begin{aligned} & \downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{2 n} \\ & \downarrow \sum_{s_{ \pm}}^{n}\left[\left(n-s_{ \pm}\right) / 2,\left(n-s_{ \pm}\right) / 2\right] \times\left\langle 1^{s_{ \pm}}\right\rangle \end{aligned}$		$N=2 n$
	$\Delta_{\text {F }}$			
	$\mathrm{SO}_{4\left(n_{+}+n_{-}\right)}$	$\downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{2 n_{+}} \times \mathrm{Sp}_{2 n_{-}}$		$N=2\left(n_{+}+n_{-}\right)$
	Δ_{+}	$\begin{aligned} & \left.\downarrow \sum_{\substack{+s_{ \pm}^{\prime} \cdot r_{ \pm}^{-} \\ \times+\times\left\langle 1^{s_{ \pm}^{+}}\right\rangle \times\left\langle 1^{s_{ \pm}^{-}}\right\rangle}} \begin{array}{l} \left.\left.n_{+}+n_{-}-s_{ \pm}^{+}-s_{ \pm}^{-}\right) / 2,\left(n_{+}-n_{-}-s_{ \pm}^{+}+s_{ \pm}^{-}\right) / 2\right] \\ \end{array}\right) \end{aligned}$		
	Δ_{-}			
$D=7$	$\begin{aligned} & \mathrm{SO}_{8 n} \\ & \Delta_{ \pm} \end{aligned}$	$\begin{aligned} & \downarrow \mathbf{S O}_{5} \times \mathbf{S p}_{2 n} \\ & \downarrow \sum_{\zeta_{ \pm}}\left[\left\langle n^{2} / \zeta_{ \pm}\right\rangle\right] \times\left\langle\tilde{\zeta}_{ \pm}\right\rangle \end{aligned}$		$N=2 n$
$D=8$	$\mathrm{SO}_{8, \mathrm{~N}}$	$\downarrow \mathrm{SO}_{6} \times \mathrm{SU}_{N} \times \mathrm{U}_{1}$		
	$\Delta_{ \pm}$	$\downarrow \sum_{s_{ \pm}}^{4 n} \sum_{\zeta \vdash s_{ \pm}}[\{\tilde{\zeta}\}] \times\{\zeta\} \times\left\{s_{ \pm}-2 N\right\}$		
$D=10$	$\begin{aligned} & \mathrm{SO}_{16 n+8} \\ & \Delta_{ \pm} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{8} \times \mathrm{SO}_{2 n+1} \\ & \downarrow \sum_{\xi}\left[\Delta ; \tilde{\zeta}^{n}\right]_{ \pm(-)} \omega_{\xi} \times\left[4^{n} / \tilde{\xi}\right] \end{aligned}$		$N=2 n+1$
	$\begin{aligned} & \mathrm{SO}_{16 n} \\ & \Delta_{ \pm} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{8} \times \mathrm{SO}_{2 n} \\ & \downarrow \sum_{\zeta_{ \pm}}\left(\left[n^{4^{4 \prime}} / \zeta_{ \pm}\right]_{+}+\left[n^{\tilde{4} n} / \zeta_{ \pm}\right]_{-}\right) \times\left[\tilde{\zeta}_{ \pm}\right] \\ & +\sum_{\zeta_{ \pm}}\left[n^{\dot{4} \prime \prime} / \zeta_{ \pm}\right] \times\left(\left[\tilde{\zeta}_{ \pm}\right]_{+}+\left[\tilde{\zeta}_{ \pm}\right]_{-}\right) \end{aligned}$		$N=2 n$
			$\zeta_{1}<n$	
			$\zeta_{1}=n$	

Table 7. Branching rules for basic spin irreps for $D=5$ to 10 .

$D=5$	$N=2$	$\begin{aligned} & \mathrm{SO}_{4} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{3} \times \mathrm{Sp}_{2} \\ & \downarrow \Delta\langle 0\rangle \\ & \downarrow[0]\langle 1\rangle \end{aligned}$
	$N=4$	$\begin{aligned} & \mathrm{SO}_{8} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{3} \times \mathrm{Sp}_{4} \\ & \downarrow[1]\langle 0\rangle+[1]\left(1^{2}\right\rangle \\ & \downarrow \Delta\langle 1\rangle \end{aligned}$
	$N=6$	$\begin{aligned} & \mathrm{SO}_{12} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{3} \times \mathrm{Sp}_{6} \\ & \downarrow[\Delta ; 1](0)+\Delta\left(1^{2}\right\rangle \\ & \downarrow[1]\langle 1\rangle+[0]\left(1^{3}\right) \end{aligned}$
	$N=8$	$\begin{aligned} & \mathrm{SO}_{16} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{3} \times \mathrm{Sp}_{8} \\ & \downarrow[2](0)+[1]\left(1^{2}\right\rangle+[0]\left(1^{4}\right) \\ & \downarrow[\Delta ; 1]\langle 1\rangle+\Delta\left\langle 1^{3}\right\rangle \end{aligned}$
	$N=10$	$\begin{aligned} & \mathrm{SO}_{20} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{3} \times \mathrm{Sp}_{10} \\ & \downarrow[\Delta ; 2]\langle 0\rangle+[\Delta ; 1]\left\langle 1^{2}\right\rangle+\Delta\left\langle 1^{4}\right\rangle \\ & \downarrow[2]\langle 1\rangle+[1]\left\langle 1^{3}\right\rangle+[0]\left\langle 1^{5}\right\rangle \end{aligned}$
	$N=12$	$\begin{aligned} & \mathrm{SO}_{24} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{3} \times \mathrm{Sp}_{12} \\ & \downarrow[3]\langle 0\rangle+[2]\left\langle 1^{2}\right\rangle+[1]\left(1^{4}\right\rangle+[0]\left(1^{6}\right) \\ & \downarrow[\Delta ; 2]\langle 1\rangle+[\Delta ; 1]\left\langle 1^{3}\right\rangle+\Delta\left(1^{5}\right) \end{aligned}$
$D=6$	$N=2$	$\begin{aligned} & \mathrm{SO}_{4} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{2} \\ & \downarrow \Delta_{+}\langle 0\rangle \\ & \downarrow[0]\langle 1\rangle \end{aligned}$
	$N=4$	$\begin{aligned} & \mathrm{SO}_{8} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{4} \\ & \downarrow\left[1^{2}\right]_{+}\langle 0\rangle+[0]\left\langle 1^{2}\right\rangle \\ & \downarrow \Delta_{+}(1\rangle \end{aligned}$
		$\begin{aligned} & \mathrm{SO}_{8} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{2} \times \mathrm{SP}_{2} \\ & \downarrow[1]\langle 0\rangle\langle 0\rangle+[0]\langle 1\rangle\langle 1\rangle \\ & \downarrow \Delta_{+}(0\rangle\langle 1\rangle+\Delta _\langle 1\rangle(0) \end{aligned}$
	$N=6$	$\begin{aligned} & \mathrm{SO}_{12} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{6} \\ & \downarrow\left[\Delta ; 1^{2}\right]_{+}\langle 0\rangle+\Delta_{+}\left\langle 1^{2}\right\rangle \\ & \downarrow\left[1^{2}\right]_{+}\langle 1\rangle+[0]\left\langle 1^{3}\right\rangle \end{aligned}$
		$\begin{aligned} & \mathrm{SO}_{12} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{4} \times \mathrm{Sp}_{2} \\ & \downarrow[\Delta ; 1]_{+}\langle 0\rangle\langle 0\rangle+\Delta_{+}\langle 1\rangle\langle 1\rangle+\Delta_{-}\left\langle 1^{2}\right\rangle\langle 0\rangle \\ & \downarrow\left[1^{2}\right]_{+}\langle 0\rangle\langle 1\rangle+[0]\left\langle 1^{2}\right\rangle(1\rangle+[1]\langle 1\rangle\langle 0\rangle \end{aligned}$
	$N=8$	$\begin{aligned} & \mathrm{SO}_{16} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{8} \\ & \downarrow\left[2^{2}\right]_{+}\langle 0\rangle+\left[1^{2}\right]_{+}\left(1^{2}\right\rangle+[0]\left\langle 1^{4}\right\rangle \\ & \downarrow\left[\Delta ; 1^{2}\right]_{+}\langle 1\rangle+\Delta_{+}\left\langle 1^{3}\right\rangle \end{aligned}$
		$\begin{aligned} & \mathrm{SO}_{16} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{6} \times \mathrm{Sp}_{2} \\ & \downarrow[21]_{+}(0)\langle 0\rangle+[1]\left(1^{2}\right\rangle\langle 0\rangle+\left[1^{2}\right]_{+}\langle 1\rangle(1\rangle+[0]\left\langle 1^{3}\right\rangle\langle 1\rangle \\ & \downarrow\left[\Delta ; 1^{2}\right]_{+}\langle 0\rangle\langle 1\rangle+\Delta_{+}\left(1^{2}\right\rangle\langle 1\rangle+[\Delta ; 1]_{+}\langle 1\rangle\langle 0\rangle+\Delta\left\langle 1^{3}\right\rangle\langle 0\rangle \end{aligned}$
		$\begin{aligned} & \mathrm{SO}_{16} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{4} \times \mathrm{Sp}_{4} \times \mathrm{Sp}_{4} \\ & \left.\downarrow[2](0\rangle(0\rangle+\left[1^{2}\right]_{-} 1^{2}\right\rangle\langle 0\rangle+\left[1^{2}\right]_{+}\langle 0\rangle\left\langle 1^{2}\right\rangle+[0]\left\langle 1^{2}\right)\left\langle 1^{2}\right\rangle \\ & \downarrow[\Delta ; 1]_{+}\langle 0\rangle(1\rangle+[\Delta ; 1]_{-}(1)\langle 0\rangle+\Delta \Delta_{-}\left(1^{2}\right\rangle\langle 1\rangle+\Delta_{+}\langle 1\rangle\left\langle 1^{2}\right\rangle \end{aligned}$
$D=7$	$N=2$	$\begin{aligned} & \mathrm{SO}_{8} \\ & \Delta_{+} \\ & \Delta_{-} \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{5} \times \mathrm{Sp}_{2} \\ & \downarrow[1]\langle 0\rangle+[0]\langle 2\rangle \\ & \downarrow \Delta(1\rangle \end{aligned}$
	$N=4$	$\begin{aligned} & \mathrm{SO}_{16} \\ & \Delta_{+} \\ & \Delta_{-} \\ & \hline \end{aligned}$	$\begin{aligned} & \downarrow \mathrm{SO}_{5} \times \mathrm{Sp}_{4} \\ & \downarrow[2]\langle 0\rangle+\left[1^{2}\right]\left(1^{2}\right\rangle+[1](2) \\ & \downarrow[\Delta ; 1]\langle 1\rangle+\Delta\langle 21\rangle \end{aligned}$

Table 7. (continued)

\begin{tabular}{|c|c|c|c|}
\hline \& $N=6$ \& $$
\begin{aligned}
& \mathrm{SO}_{24} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$ \& $$
\begin{aligned}
& \downarrow \mathrm{SO}_{5} \times \mathrm{Sp}_{6} \\
& \downarrow[3]\langle 0\rangle+[21]\left\langle 1^{2}\right\rangle+[2]\langle 2\rangle+\left[1^{2}\right]\left\langle 21^{2}\right\rangle+[1]\left\langle 2^{2}\right\rangle+[0]\left\langle 2^{3}\right\rangle \\
& \left.\downarrow[\Delta ; 2]\langle 1\rangle+\left[\Delta ; 1^{2}\right]\left\langle 1^{3}\right\rangle+[\Delta ; 1]\langle 21\rangle+\Delta 2^{2} 1\right\rangle
\end{aligned}
$$

\hline \& $N=8$ \& $$
\begin{aligned}
& \mathrm{SO}_{32} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$ \& $$
\begin{aligned}
& \downarrow \mathrm{SO}_{5} \times \mathrm{Sp}_{8} \\
& \downarrow[4]\langle 0\rangle+[31]\left\langle 1^{2}\right)+[3](2\rangle+\left[2^{2}\right]\left\langle 1^{4}\right\rangle+[21]\left(21^{2}\right\rangle+[2]\left(2^{2}\right)+\left[1^{2}\right]\left\langle 2^{2} 1^{2}\right\rangle \\
& \quad+[1]\left\langle 2^{3}\right\rangle+[0]\left\langle 2^{4}\right\rangle \\
& \downarrow[\Delta ; 3]\langle 1\rangle+[\Delta ; 21](3\rangle+[\Delta ; 2]\langle 21\rangle+\left[\Delta ; 1^{2}\right]\left\langle 21^{3}\right\rangle+[\Delta ; 1]\left\langle 2^{2} 1\right\rangle+\Delta\left\langle 2^{3} 1\right\rangle
\end{aligned}
$$

\hline \multirow[t]{3}{*}{$D=8$} \& $N=1$ \& $$
\begin{aligned}
& \mathrm{SO}_{8} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$ \& $$
\begin{aligned}
& \downarrow \mathrm{SO}_{6} \times \mathrm{U}_{1} \\
& \downarrow[0]\{\overline{2}\}+[1]\{0\}+[0]\{2\} \\
& \downarrow \Delta_{+}\{\overline{1}\}+\Delta_{-}\{1\}
\end{aligned}
$$

\hline \& $N=2$ \& $$
\begin{aligned}
& \mathrm{SO}_{16} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$ \& $$
\begin{aligned}
& \downarrow \mathrm{SO}_{6} \times \mathrm{SU}_{2} \times \mathrm{U}_{1} \\
& \downarrow[0]\{0\}(\{\overline{4}\}+\{4\})+\left[1^{3}\right]_{+}\{0\}\{\overline{2}\}+\left[1^{3}\right]_{-}\{0\}\{2\}+[1]\{2\}(\{\overline{2}\}+\{2\}) \\
& \quad+\left([0]\{4\}+[2]\{0\}+\left[1^{2}\right]\{2\}\right)\{0\} \\
& \downarrow \Delta_{+}\{1\}\{\overline{3}\}+\Delta_{-}\{1\}\{3\}+\Delta_{+}\{3\}\{1\}+\Delta_{-}\{3\}\{\overline{1}\}+[\Delta ; 1]_{+}\{1\}\{\overline{1}\} \\
& \quad+[\Delta ; 1]_{-}\{1\}\{1\}
\end{aligned}
$$

\hline \& $N=3$ \& SO_{24}
Δ_{+}

Δ_{-} \& $$
\begin{aligned}
& \downarrow \mathrm{SO}_{6} \times \mathrm{SU}_{3} \times \mathrm{U}_{1} \\
& \downarrow[0]\{0\}(\{\overline{6}\}+\{6\})+\left([1]\{2\}+\left[1^{3}\right]_{+}\left\{1^{2}\right\}\right)\{\overline{4}\}+\left([1]\left\{2^{2}\right\}+\left[1^{3}\right]_{-}\{1\}\right)\{4\} \\
& \quad+\left(\left[21^{2}\right]_{+}\{1\}+[2]\left\{2^{2}\right\}+\left[1^{2}\right]\{31\}\right)\{\overline{2}\}+\left(\left[21^{2}\right]_{-}\left\{1^{2}\right\}+[2]\{2\}+\left[1^{2}\right]\{32\}\right) \\
& \{2\}+\left([3]\{0\}+\left[1^{3}\right]_{+}\{3\}+\left[1^{3}\right]_{-}\left\{3^{2}\right\}+[1]\{42\}+[21]\{21\}\right)\{0\} \\
& \left.\downarrow \Delta_{-}\{1\}\{\overline{5}\}+\Delta_{+}\left\{1^{2}\right\}\{5\}+\left(\left[\Delta ; 1^{3}\right]_{+}\{0\}+\Delta-\Delta_{-} 3\right\}+[\Delta ; 1]_{+}\{21\}\right)\{3\} \\
& \\
& \quad+\left(\left[\Delta ; 1^{3}\right]_{-}\{0\}+\Delta_{+}\left\{2^{2}\right\}+[\Delta ; 1]_{-}\{21\}\right)\{\overline{3}\} \\
& \\
& \quad+\left(\Delta_{-}\{41\}+[\Delta ; 1]_{+}\left\{1^{2}\right\}+[\Delta ; 1]_{-}\{32\}+\left[\Delta ; 1^{2}\right]_{+}\{21\}\right)\{\overline{\mathrm{I}}\} \\
& \\
& \quad+\left(\Delta_{+}\{43\}+[\Delta ; 1]_{-}\{1\}+[\Delta ; 1]_{+}\{31\}+\left[\Delta ; 1^{2}\right]_{-}\{21\}\right)\{1\}
\end{aligned}
$$

\hline \multirow[t]{4}{*}{$D=9$} \& $N=1$ \& \[
$$
\begin{aligned}
& \mathrm{SO}_{8} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \downarrow \mathrm{SO}_{7} \times \mathrm{SO}_{1} \\
& \downarrow \Delta \\
& \downarrow[1]+[0]
\end{aligned}
$$
\]

\hline \& $N=2$ \& \[
$$
\begin{aligned}
& \mathrm{SO}_{16} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \downarrow \mathrm{SO}_{7} \times \mathrm{SO}_{2} \\
& \downarrow\left(\left[1^{3}\right]+[2]+[1]_{+}+[0]\right)[0]+\left(\left[1^{2}\right]_{+}+[1]\right)\left([2]_{+}+[2]_{-}\right)+[0]\left([4]_{+}+[4]_{-}\right) \\
& \downarrow([\Delta ; 1]+\Delta)\left([1]_{+}+[1]_{-}\right)+\Delta\left([3]_{+}+[3]_{-}\right)
\end{aligned}
$$
\]

\hline \& $N=3$ \& \[
$$
\begin{aligned}
& \mathrm{SO}_{24} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \downarrow \mathrm{SO}_{7} \times \mathrm{SO}_{3} \\
& \downarrow([1]+[0])[4]+([\Delta ; 1]+\Delta)[3]+\left(\left[\Delta ; 1^{2}\right]+[\Delta ; 1]\right)[2] \\
& \quad+([\Delta ; 2]+[\Delta ; 1]+\Delta)[1]+\left[\Delta ; 1^{3}\right][0] \\
& \downarrow([1]+[0])[4]+\left(\left[1^{3}\right]+\left[1^{2}\right]\right)[3]+\left([21]+[2]+\left[1^{2}\right]+[1]\right)[2] \\
& \quad+\left(\left[21^{2}\right]+\left[1^{3}\right]\right)[1]+([3]+[2]+[1]+[0])[0]
\end{aligned}
$$
\]

\hline \& $N=4$ \& SO_{32}
Δ_{+}

Δ_{-} \& $$
\begin{aligned}
\downarrow & \mathrm{SO}_{7} \times \mathrm{SO}_{4} \\
\downarrow & \left(\left[2^{3}\right]+[4]+[3]+[2]+[1]+[0]\right)[0]+\left(\left[31^{2}\right]+\left[21^{2}\right]+\left[1^{3}\right]\right)\left(\left[1^{2}\right]_{+}+\left[1^{2}\right]_{-}\right) \\
& +\left(\left[2^{2} 1\right]+\left[21^{2}\right]+[31]+[3]+[21]+[2]+\left[1^{2}\right]+[1]\right)[2] \\
& +\left(\left[2^{2}\right]+[21]+[2]\right)\left(\left[2^{2}\right]_{-}+\left[2^{2}\right]_{-}\right)+\left(\left[21^{2}\right]+[21]+\left[1^{3}\right]+\left[1^{2}\right]\right) \\
& \left([31]_{+}+[31]_{-}\right)+\left(\left[1^{3}\right]+[2]+[1]+[0]\right)[4]+\left[1^{3}\right] \\
& \left(\left[3^{2}\right]_{+}+\left[3^{2}\right]_{-}\right)+\left(\left[1^{2}\right]+[1]\right)\left([42]_{+}+[42]_{-}\right)+[0]\left(\left[4^{2}\right]_{+}+\left[4^{2}\right]_{-}\right) \\
\downarrow & \left(\left[\Delta ; 21^{2}\right]+\left[\Delta ; 1^{3}\right]+[\Delta ; 3]+[\Delta ; 2]+[\Delta ; 1]+\Delta\right)[1] \\
& +\left([\Delta ; 21]+[\Delta ; 2]+\left[\Delta ; 1^{2}\right]+[\Delta ; 1]\right)\left([21]_{+}+[21]_{-}\right) \\
& +\left(\left[\Delta ; 1^{3}\right]+\left[\Delta ; 1^{2}\right]+[\Delta ; 2]+[\Delta ; 1]+\Delta\right)[3]+\left(\left[\Delta ; 1^{2}\right]_{+}+[\Delta ; 1]\right) \\
& \left([32]_{+}+[32]_{-}\right)+([\Delta ; 1]+\Delta)\left([41]_{+}+[41]_{-}\right)+\Delta\left([43]_{+}+[43]_{-}\right)
\end{aligned}
$$

\hline \multirow[t]{2}{*}{$D=10$} \& $N=1$ \& \[
$$
\begin{aligned}
& \mathrm{SO}_{8} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \downarrow \mathrm{SO}_{8} \\
& \downarrow \Delta_{-} \\
& \downarrow[1]
\end{aligned}
$$
\]

\hline \& $N=2$ \& \[
$$
\begin{aligned}
& \mathrm{SO}_{16} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \downarrow \mathrm{SO}_{8} \times \mathrm{SO}_{2} \\
& \downarrow\left(\left[1^{4}\right]_{-}+[2]\right)[0]+\left[1^{2}\right]\left([2]_{+}+[2]_{-}\right)+[0]\left([4]_{+}+[4]_{-}\right) \\
& \downarrow\left[\Delta_{;} 1\right]_{-}\left([1]_{+}+[1]_{-}\right)+\Delta_{+}\left([3]_{+}+[3]_{-}\right)
\end{aligned}
$$
\]

\hline
\end{tabular}

Table 7. (continued)

$$
\begin{aligned}
& N=3 \quad \mathrm{SO}_{24} \quad \downarrow \mathrm{SO}_{8} \times \mathrm{SO}_{3} \\
& \Delta_{+} \quad \downarrow \Delta_{-}[4]+[\Delta ; 1]_{+}[3]+\left[\Delta ; 1^{2}\right]_{-}[2]+[\Delta ; 2]_{-}[1]+\left[\Delta ; 1^{4}\right]_{-}[0] \\
& \Delta_{-} \quad \downarrow[1][4]+\left[1^{3}\right][3]+[21][2]+\left[21^{3}\right]-[1]+[3][0] \\
& \mathrm{N}=4 \quad \mathrm{SO}_{32} \quad \downarrow \mathrm{SO}_{8} \times \mathrm{SO}_{4} \\
& \Delta_{+} \quad \downarrow\left(\left[2^{4}\right]_{-}+[4]\right)[0]+\left[31^{3}\right]_{-}\left(\left[1^{2}\right]_{+}+\left[1^{2}\right]_{-}\right)+\left(\left[2^{2} 1^{2}\right]_{-}+[31]\right)[2]+\left[2^{2}\right] \\
& \left(\left[2^{2}\right]_{+}+\left[2^{2}\right]_{-}\right)+\left[21^{2}\right]\left([31]_{+}+[31]_{-}\right)+\left(\left[1^{4}\right]_{-}+[2]\right)[4] \\
& +\left[1^{4}\right]_{+}\left(\left[3^{2}\right]_{+}+\left[3^{2}\right]_{-}\right)+\left[1^{2}\right]\left([42]_{+}+[42]_{-}\right)+[0]\left(\left[4^{2}\right]_{+}+\left[4^{2}\right]_{-}\right) \\
& \Delta_{-} \quad \downarrow\left[\Delta ; 21^{3}\right]_{-}[1]+[\Delta ; 3]_{-}[1]+[\Delta ; 21]_{-}\left([21]_{+}+[21]_{-}\right)+\left(\left[\Delta ; 1^{3}\right]_{-}+[\Delta ; 2]_{+}\right) \\
& {[3]_{+}\left[\Delta ; 1^{2}\right]_{+}\left([32]_{+}+[32]_{-}\right)+[\Delta ; 1]_{-}\left([41]_{+}+[41]_{-}\right)} \\
& +\Delta_{+}\left([43]_{+}+[43]_{-}\right) \\
& N=5 \quad \mathrm{SO}_{40} \quad \downarrow \mathrm{SO}_{8} \times \mathrm{SO}_{5} \\
& \Delta_{+} \quad \downarrow \Delta_{+}\left[4^{2}\right]+[\Delta ; 1]_{+}[43]+\left[\Delta ; 1^{2}\right]_{-}[42]+\left[\Delta ; 1^{3}\right]_{+}\left[3^{2}\right]+[\Delta ; 2]-[41] \\
& +[\Delta ; 21]_{+}[32]+\left[\Delta ; 1^{4}\right]_{-}[4]+\left[\Delta ; 21^{2}\right]_{-}[31]+\left[\Delta ; 2^{2}\right]_{-}\left[2^{2}\right]+[\Delta ; 3]_{+}[3] \\
& +[\Delta ; 31]_{-}[21]+\left[\Delta ; 2^{2} 1^{2}\right][2]+\left[\Delta ; 31^{3}\right]_{-}\left[1^{2}\right]+[\Delta ; 4]_{-}[1]+\left[\Delta ; 2^{4}\right]_{-}[0] \\
& \Delta \text {. } \quad \downarrow[1]\left[4^{2}\right]+\left[1^{3}\right][43]+[21][42]+\left[21^{3}\right]-\left[3^{2}\right]+\left[21^{3}\right]-[41]+\left[2^{2} 1\right][32] \\
& +[3][4]+\left[31^{2}\right][31]+[32]\left[2^{2}\right]+\left[2^{3} 1\right]-[3]+\left[321^{2}\right]-[21]+[41][2] \\
& +\left[41^{3}\right]_{-}\left[1^{2}\right]+\left[32^{3}\right]_{-}[1]+[5][0]
\end{aligned}
$$

Table 8. Decomposition of $\Delta_{ \pm}$under $\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D \times 4} \times \mathrm{U}_{1} \times \mathrm{K}$.

$D=1,3(\bmod 8)$	$2 k=2^{(D-3) / 2} N$
$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-4} \times \mathrm{U}_{1} \times \mathrm{SO}_{N}$	$D \geqslant 9$
$\Delta_{ \pm} \quad \downarrow \sum_{s_{ \pm}} \sum_{\rho r s_{ \pm}}[\Delta \otimes\{\rho\}] \times\left\{s_{ \pm} / 2-k / 4\right\} \times[\tilde{\rho} / D]$	
$D=5,7(\bmod 8)$	$2 k=2^{(D-3) / 2} N$
$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-4} \times \mathrm{U}_{1} \times \mathrm{Sp}_{N}$	$D \geqslant 7$
$\Delta_{ \pm} \quad \downarrow \sum_{s_{ \pm}} \sum_{\rho \rightarrow s_{ \pm}}[\Delta \otimes\{\rho\}] \times\left\{s_{ \pm} / 2-k / 4\right\} \times\langle\bar{\rho} / B\rangle$	
$D=2(\bmod 8)$	$2 k=2^{(D-4) / 2}\left(N_{+}+N_{-}\right)$
$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{\mathrm{D-4}^{4}} \times \mathrm{U}_{1} \times \mathrm{SO}_{\mathrm{N}_{+}} \times \mathrm{SO}_{\mathrm{N}_{-}}$	$D \geqslant 10$
$\Delta_{ \pm} \downarrow \sum_{s_{ \pm}} \sum_{\rho-s_{ \pm}} \sum_{\eta-k-s_{x}}\left[\left(\Delta_{+} \otimes\{\rho\}\right) \cdot\left(\Delta_{-} \otimes\{\eta\}\right)\right] \times\left\{s_{ \pm} / 2-k / 4\right\} \times[\tilde{\rho} / D] \times[\tilde{\eta} / D]$	
$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D-4} \times \mathrm{U}_{1} \times \mathrm{SO}_{N}$	
$\Delta_{ \pm} \quad \downarrow \sum_{s_{ \pm}} \sum_{\rho-s_{ \pm}}\left[\Delta_{+} \otimes\{\rho\}\right] \times\left\{s_{ \pm} / 2-k / 4\right\} \times[\tilde{\rho} / D]$	
$D=6(\bmod 8)$	$2 k=2^{(D-4) / 2}\left(N_{+}+N_{-}\right)$
$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{D_{-4}} \times \mathrm{U}_{1} \times \mathrm{Sp}_{\mathrm{N}_{+}} \times \mathrm{Sp}_{N_{-}}$	$D \geqslant 14$
$\left.\Delta_{ \pm} \downarrow \sum_{s_{ \pm}} \sum_{\rho-s_{ \pm}} \sum_{\eta-k-s_{ \pm}}\left[\Delta_{+} \otimes\{\rho\}\right) \cdot\left(\Delta_{-} \otimes\{\eta\}\right)\right] \times\left\{s_{ \pm} / 2-k / 4\right\} \times\langle\tilde{\rho} / B\rangle \times\langle\tilde{\eta} / B\rangle$	
$\mathrm{SO}_{2 k} \downarrow \mathrm{SO}_{\text {D-4 }} \times \mathrm{U}_{1} \times \mathrm{Sp}_{N}$	
$\Delta_{ \pm} \quad \downarrow \sum_{s_{ \pm}} \sum_{\rho \rightarrow s_{ \pm}}\left[\Delta_{+} \otimes\{\rho\}\right] \times\left\{s_{ \pm} / 2-k / 4\right\} \times\langle\tilde{\rho} / B\rangle$	

The results in table 6 exhaust the possibilities for exploiting isomorphisms and automorphisms. For $D=0,4(\bmod 8)(16)$ gives the general result. For other values of D it is possible to make use of the group-subgroup structure

The lower chain can be evaluated using first (5) and the properties of plethysm (Littlewood 1950, Wybourne 1970) to yield the results given in table 8. The principal difficulty in implementing those results is the evaluation of the relevant spin plethysms. Having obtained the results for the lower chain the irreps of $\mathrm{SO}_{D-2} \times \mathrm{K}$ that cover those of $\mathrm{SO}_{D-4} \times \mathrm{U}_{1} \times \mathrm{K}$ can be found by the string method (Wybourne 1984).

Specific results for $D=11$ with $N \leqslant 3$ are given in table 9 . For $N=2$ the SO_{2} non-scalar irreps are grouped in pairs as for O_{2}.

Table 9. Branching rules for the basic spin irreps under $\mathrm{SO}_{16 \mathrm{~N}} \downarrow \mathrm{SO}_{N} \times \mathrm{SO}_{9}, N=1,2,3$.

\begin{tabular}{|c|c|c|c|}
\hline $D=11$ \& $N=1$ \& $$
\begin{aligned}
& \mathrm{SO}_{16} \\
& \Delta_{+} \\
& \Delta_{-}
\end{aligned}
$$ \& $$
\begin{aligned}
& \downarrow \mathrm{SO}_{9} \\
& \downarrow[2]+\left[1^{3}\right] \\
& \downarrow[\Delta ; 1]
\end{aligned}
$$

\hline \& $N=2$ \& SO_{32}
Δ_{+}

Δ_{-} \& $$
\begin{aligned}
& \downarrow \mathrm{O}_{2} \times \mathrm{SO} \\
& \downarrow[0]\left([4]+\left[33^{3}\right]+\left[31^{2}\right]+[3]+\left[2^{3}\right]+\left[2^{2} 1\right]+\left[2^{2}\right]+\left[21^{3}\right]+\left[21^{2}\right]+[2]\right. \\
& \left.\quad+\left[1^{4}\right]+\left[1^{3}\right]+[1]+[0]\right) \\
& +[2]\left(\left[31^{2}\right]+[31]+\left[2^{2} 1^{2}\right]+\left[21^{2}\right]+[21]+\left[1^{3}\right]+\left[1^{2}\right]\right) \\
& \left.+[4]\left(\left[2^{2}\right]+\left[21^{3}\right]\right]+[21]+[2]+\left[1^{4}\right]\right) \\
& \quad+[6]\left(\left[1^{3}\right]+\left[1^{2}\right]\right) \\
& \quad+[8][0] \\
& \downarrow[1]\left([\Delta ; 3]+\left[\Delta ; 21^{2}\right]+[\Delta ; 21]+[\Delta ; 2]+\left[\Delta ; 1^{3}\right]+\left[\Delta ; 1^{2}\right]+[\Delta ; 1]+\Delta\right) \\
& \left.\quad+[3](\Delta ; 21]+[\Delta ; 2]+\left[\Delta ; 1^{4}\right]+\left[\Delta ; 1^{2}\right]+[\Delta ; 1]\right) \\
& +[5]\left(\left[\Delta ; 1^{2}\right]+[\Delta ; 1]\right) \\
& +[7] \Delta
\end{aligned}
$$

\hline \& $N=3$ \& $$
\begin{aligned}
& \mathrm{SO}_{48} \\
& \Delta_{+}
\end{aligned}
$$ \&

\hline
\end{tabular}

Table 9. (continued)

$$
\begin{aligned}
& +[5]\left(\left[321^{2}\right]+[321]+[32]+2\left[31^{3}\right]+\left[31^{2}\right]+[31]+[3]+\left[2^{3} 1\right]+2\left[2^{2} 1^{2}\right]\right. \\
& \left.+2\left[2^{2} 1\right]+\left[2^{2}\right]+2\left[21^{3}\right]+3\left[21^{2}\right]+2[21]+2\left[1^{4}\right]+\left[1^{3}\right]+\left[1^{2}\right]+[1]\right) \\
& +[6]\left(\left[31^{2}\right]+[31]+\left[2^{3}\right]+\left[2^{2} 1^{2}\right]+\left[2^{2} 1\right]+\left[2^{2}\right]+2\left[21^{3}\right]+\left[21^{2}\right]+[21]\right. \\
& \left.+[2]+\left[1^{4}\right]+2\left[1^{3}\right]+\left[1^{2}\right]+[0]\right) \\
& +[7]\left(\left[21^{3}\right]+\left[21^{2}\right]+[21]+\left[1^{4}\right]+\left[1^{2}\right]+[1]\right) \\
& +[8]\left([2]+\left[1^{3}\right]\right) \\
\Delta & {[0]\left(\left[\Delta ; 41^{3}\right]+[\Delta ; 4]+[\Delta ; 321]+\left[\Delta ; 31^{2}\right]+[\Delta ; 31]+\left[\Delta ; 2^{2} 1\right]+\left[\Delta ; 21^{3}\right]\right.} \\
& \left.+\left[\Delta ; 21^{2}\right]+[\Delta ; 21]+[\Delta ; 2]+\left[\Delta ; 1^{4}\right]+\left[\Delta ; 1^{2}\right]+[\Delta ; 1]\right) \\
& +[1]\left([\Delta ; 5]+\left[\Delta ; 41^{2}\right]+[\Delta ; 41]+[\Delta ; 4]+\left[\Delta ; 32^{2}\right]+[\Delta ; 321]+[\Delta ; 32]\right. \\
& +\left[\Delta ; 31^{3}\right]+2\left[\Delta ; 31^{2}\right]+2[\Delta ; 31]+2[\Delta ; 3]+\left[\Delta ; 2^{3}\right]+\left[\Delta ; 2^{2} 1^{2}\right] \\
& +2\left[\Delta ; 2^{2} 1\right]+\left[\Delta ; 2^{2}\right]+\left[\Delta ; 21^{3}\right]+3\left[\Delta ; 21^{2}\right]+3[\Delta ; 21]+2[\Delta ; 2]+\left[\Delta ; 1^{4}\right] \\
& \left.+2\left[\Delta ; 1^{3}\right]+2\left[\Delta ; 1^{2}\right]+2[\Delta ; 1]+\Delta\right) \\
& +[2]\left(\left[\Delta ; 41^{2}\right]+[\Delta ; 41]+[\Delta ; 4]+\left[\Delta ; 321^{2}\right]+[\Delta ; 321]+[\Delta ; 32]\right. \\
& +\left[\Delta ; 31^{3}\right]+3\left[\Delta ; 31^{2}\right]+3[\Delta ; 31]+2[\Delta ; 3]+\left[\Delta ; 2^{3}\right]+\left[\Delta ; 2^{2} 1^{2}\right] \\
& +2\left[\Delta ; 2^{2} 1\right]+2\left[\Delta ; 2^{2}\right]+2\left[\Delta ; 21^{3}\right]+4\left[\Delta ; 21^{2}\right]+4[\Delta ; 21]+3[\Delta ; 2] \\
& \left.+\left[\Delta ; 1^{4}\right]+3\left[\Delta ; 1^{3}\right]+3\left[\Delta ; 1^{2}\right]+2[\Delta ; 1]+\Delta\right) \\
& +[3]\left([\Delta ; 41]+[\Delta ; 4]+[\Delta ; 321]+[\Delta ; 32]+\left[\Delta ; 31^{3}\right]+2\left[\Delta ; 31^{2}\right]\right. \\
& +3[\Delta ; 31]+2[\Delta ; 3]+\left[\Delta ; 2^{3} 1\right]+\left[\Delta ; 2^{2} 1^{2}\right]+2\left[\Delta ; 2^{2} 1\right]+2\left[\Delta ; 2^{2}\right] \\
& +2\left[\Delta ; 21^{3}\right]+4\left[\Delta ; 21^{2}\right]+5[\Delta ; 21]+3[\Delta ; 2]+2\left[\Delta ; 1^{4}\right]+2\left[\Delta ; 1^{3}\right] \\
& \left.+3\left[\Delta ; 1^{2}\right]+3[\Delta ; 1]\right) \\
& +[4]\left([\Delta ; 32]+\left[\Delta ; 31^{3}\right]+\left[\Delta ; 31^{2}\right]+2[\Delta ; 31]+2[\Delta ; 3]+\left[\Delta ; 2^{2} 1^{2}\right]\right. \\
& +\left[\Delta ; 2^{2} 1\right]+2\left[\Delta ; 2^{2}\right]+2\left[\Delta ; 21^{3}\right]+3\left[\Delta ; 21^{2}\right]+4[\Delta ; 21] \\
& \left.+3[\Delta ; 2]+\left[\Delta ; 1^{4}\right]+3\left[\Delta ; 1^{3}\right]+3\left[\Delta ; 1^{2}\right]+2[\Delta ; 1]+\Delta\right) \\
& +[5]\left([\Delta ; 31]+[\Delta ; 3]+\left[\Delta ; 2^{2} 1\right]+\left[\Delta ; 2^{2}\right]+\left[\Delta ; 21^{3}\right]+2\left[\Delta ; 21^{2}\right]\right. \\
& \left.+3[\Delta ; 21]+2[\Delta ; 2]+\left[\Delta ; 1^{4}\right]+2\left[\Delta ; 1^{3}\right]+3\left[\Delta ; 1^{2}\right]+2[\Delta ; 1]+\Delta\right) \\
& +[6]\left(\left[\Delta ; 21^{2}\right]+2[\Delta ; 21]+[\Delta ; 2]+\left[\Delta ; 1^{4}\right]+\left[\Delta ; 1^{3}\right]+2\left[\Delta ; 1^{2}\right]+2[\Delta ; 1]\right. \\
& +\Delta) \\
& +[7]\left([\Delta ; 2]+\left[\Delta ; 1^{3}\right]+\left[\Delta ; 1^{2}\right]+[\Delta ; 1]+\Delta\right) \\
& {[8][\Delta ; 1] }
\end{aligned}
$$

5. Conclusions

The branching rules for several important subgroups of $\mathrm{SO}_{2 k}$ have been obtained in a compact form using properties of Schur functions. The relevant rules that arise in the determination of light-like representations from extended Poincaré supersymmetry have been given in a form that readily allows extensions to higher helicity states if required.

Acknowledgments

We thank Dr John Strathdee for a number of useful discussions and for making an advance copy of his manuscript available to us. The work in this paper would not have been possible without use of the computer package schur developed by GRE Black and recently extended by M G Hirst.

References

_- 1984 Phys. Lett. 138B 67
Black G R E, King R C and Wybourne B G 1983 J. Phys. A: Math. Gen. 161555
Black G R E and Wybourne B G 1983 J. Phys. A: Math. Gen. 162405
Curtright T L 1982a Phys. Rev. Lett. 481704
_- 1982b Preprint, UFTP-82-22 University of Florida
Green M B and Schwarz J H 1984 Phys. Lett. 136B 367
King R C 1975 J. Phys. A: Math. Gen. 8429
King R C, Luan Dehuai and Wybourne B G 1981 J. Phys. A: Math. Gen. 142509
Littlewood D E 1947 Proc. Lond. Math. Soc. 49307

- 1948 Proc. Lond. Math. Soc. 50349
- 1950 The Theory of Group Characters 2nd edn (Oxford: Clarendon)

Morris A O 1958 J. Lond. Math. Soc. 33326

- 1961 Q. J. Math. Oxford 12 (2) 169

Murnaghan F D 1938 The Theory of Group Representations (Baltimore, MD: Johns Hopkins)
Strathdee J 1985 Preprint, Extended Poincaré supersymmetry
Wybourne B G 1970 Symmetry Principles and Atomic Spectroscopy (New York: Wiley-Interscience)

- 1973 Int. J. Quantum Chem. 71117

1974 Classical Groups for Physicists (New York: Wiley-Interscience)

- 1984 J. Phys. A: Math. Gen. 171397

