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Extended Poincare supersymmetry, rotation groups and 
branching rules 

M Yangt and B G Wybourne 
Department of Physics, University of Canterbury, Christchurch, New Zealand 

Received 9 October 1985 

Abstract. The decomposition of the basic spin irreps of the special orthogonal group SOzk 
into i m p s  of SOD-2 x K, where D is the spacetime dimension of the extended D- 
dimensional PoincarC supersymmetry and K is the appropriate automorphism group, is 
determined. General results for D s 10 capable of extending decompositions of i m p s  
giving rise to helicities greater than *2 are given together with a general method for D > 10. 
Several new branching rules for subgroups of SOzI, are developed. A number of specific 
results are tabulated. 

1. Introduction 

The even-dimensional rotation groups S 0 2 k  continue to find wide applications in 
physical problems. Important examples arise in the interacting boson model of nuclei 
(Arima and Iachello 1976), extended PoincarC supersymmetry (Strathdee 1985) and 
in superstring theories (Green and Schwarz 1984). The properties of the basic spin 
irreps of SO, are of special significance. The analysis of the antisymmetric powers of 
a spin irrep is an important problem in supergravity theories (Curtright 1982a, b, 
Bergshoeff and de Roo 1982, 1984). A complete resolution of the second and third 
powers of the basic spin irrep of SO, together with a prescription for analysing the 
fourth power of these irreps has been given (King et a1 1981). A complete reduction 
of all antisymmetric powers of the basic spin irrep of SO,, has been derived (Black 
and Wybourne 1983). 

is compli- 
cated by the occurrence of pairs of conjugate irreps that must be carefully distinguished 
at all stages. A compact description of the resolution of the Kronecker products of 
irreps of SOzk has been given (Black et al 1983). Branching rules for irreps of S 0 2 k  

have in many cases been developed (King 1975, Black et a1 1983, Black and Wybourne 
1983). A method for E8 J. SO,, branching rules has also been given (Wybourne 1984). 

In this paper we first give a complete resolution of all antisymmetric powers of the 
basic spin irreps of SO, for n C 10. It then becomes possible to express any symmetrised 
power of the basic spin irreps for n s 10 as sums of products of the antisymmetrised 
powers. The symmetrised powers of the basic spin irreps, up to fourth power, are 
tabulated for SO,(n c 10). 

We next introduce a number of additional branching rules for important subgroups 
of SOzk drawing heavily upon the properties of Schur functions (King et a1 1981, 
Black et a1 1983). 

The study of the properties of the even-dimensional rotation groups 
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Finally we examine the decomposition of the basic spin irreps of S02k under the 
group-subgroup restriction SOzk &SOD-2 X K where D is the spacetime dimension of 
the extended D-dimensional PoincarC supersymmetry and K is the automorphism 
group appropriate to D. This problem is of special significance in determining accep- 
table light-like representations. Group isomorphisms and automorphisms are exploited 
to give for D 6 10 results that can readily be extended to any number of supercharges. 
A general method for cases with D > 10 is sketched. A useful table of decompositions 
is included. 

2. Symmetrised powers of basic spin irreps of SO. 

Let us designate the 2k-dimensional basic spin irrep of S02k+l by A and two inequivalent 
2k-'-dimensional basic spin irreps of SOzk by A+ and A- (King et al 1981). The basic 
spin irreps A of SOZk+l are orthogonal if 2k + 1 = 1,7(mod 8) or symplectic if 2k + 1 = 
3,5(mod 8) while the basic spin irreps A, of S02k are orthogonal if 2k = O(mod 8), 
symplectic if 2k = 4(mod 8) and complex if 2k = 2,6(mod 8). 

In general the resolution of a symmetrised power of' a basic spin irrep amounts to 
the evaluation of the spin plethysm (Littlewood 1947, 1948, 1950) 

AO{A) n = 2 k + l  ( l a )  

A*@{A> n = 2 k  (1b) 

where for the pth power in A (or A,) ( A )  is a partition of the integer p ,  i.e. A + p. 

rule for the unitary group irrep { A }  under the restriction 
The evaluation of the spin plethysms in (1 )  is equivalent to evaluating the branching 

u2k SOZk+l where { 1) 3. A (2a)  

Uzk-' .1 SOzk (2b) 

or 

where { 1) .1 A+ (or A-) 

where in (26) if (1) J. A+ then (7 )  J. A-. (In general we understand the irrep ( p )  of the 
unitary group to be contragradient to the irrep {CL}.) The plethysms A @ {  1") or A,O{l"} 
correspond to the reduction of an antisymmetric tensor { 1") under the appropriate 
rotation group. 

Let us put CY = 2k or 2k-1 according to whether we are concerned with so2k+] or 
S02k respectively. Suppose we take a set of a fermion fields spanning the basic spin 
irrep of SO,(n = 2 k +  1 or 2 k )  and form all possible antisymmetric states. The total 
number of such states will be 2" and the complete set of antisymmetric states will span 
the vector irrep (1) of U2=. 

Under U2m .1 SO2,+, we find (Wybourne 1973, 1974) 

(1) .1 A. (3) 

A .1 A++A-. (4) 

Further restriction to SOz, gives 

Restriction to the subgroup SU, x U, then leads to (Black and Wybourne 1983) 
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where the + or - sign is taken right through as appropriate and s+ (s-) are even (odd) 
integers. 

The group SU, may be further restricted by considering whether the basic spin 
irrep A or A, of SO, is orthogonal, symplectic or complex leading to the group 
structures listed in table 1 for n 3 5. 

Table 1. Group-subgroup structures for the set of antisymmetrised powers of a basic 
spin irrep of SO,( n 2 5 ) .  

n =0,1,7(mod 8) 

n = 2,6(mod 8) 

u2. = SO2,+, =so,, = [SU, so, 3 SO,]  x U, 

U,. = so,,+, =so,, = [SU, = S O , ]  x U, 
n = 3,4,5(mod 8) U,- 2 SO,,,, 2 s02, [su, SP, so,] UI 

For n s 6 it is useful to exploit the properties of the locally isomorphic sets of groups 

so, - U, ( 6 ~ )  

su2 - so3 - sp2 ( 6 6 )  

SO, - SU, x SU, - SO3 x SO3 - Sp, x Sp, ( 6 ~ )  

SP, - so5 (6d 1 
so, - su, (6e)  

and the representation correspondences 

[ U 1  - {U)  

{ a } -  [ 4 2 1  - ( a )  (7b )  

(7c)  

( 7 d )  

(7e) 

[ U ,  b ]  - { U  + b }  x { U  - b } -  [ ( U  + b ) / 2 ]  x [ ( U  - b ) / 2 ]  - ( U  + b )  x ( U  - b )  

( U ,  6)- [ ( U  + b ) / 2 ,  ( U  - b)/21 

[ u ~ c ]  - { U  + b, U - C, b - c}. 

The three-index outer automorphism of SOs is such that (Littlewood 1948) 

[ubcd] - [ $ ( U  + b+ C +  d ) ,  + (U  + 6 - c - d ) ,  $ (U  - b + c - d ) ,  + ( - a  + b + c - d ) ]  (8) 

leading for example to 

A+-  [ 11 - A -  - A+. ( 9 )  

Thus the automorphism applied to A+ yields the vector irrep of SO8. Two further 
applications of - yields the original irrep. We shall designate two successive 
automorphisms by the symbol -" noting that 

[ U ,  6, C, d ] - " [ $ ( ~  + b+ c - d ) ,  $ (U  + 6 - C +  d ) ,  +(U - b+ C +  d ) ,  $ ( U  - b - C -  d ) ] .  (8 ' )  

The above results together with those given by King et a1 (1981) and the Kronecker 
product results of Black et a1 (1983) readily lead to the resolution of the antisymmetrised 
powers of the basic spin irreps of SO,, for n C 10. A method of evaluating the 
corresponding powers for SO,, has been given (Black and Wybourne 1983) but the 
results are too voluminous to present here. In the case of n = 2k it is only necessary 
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to list the results up to A+O{lk}  due to the involutary outer automorphism t for SO,, 
which gives 

A+@{l'"-"} = (A+@{l"})' (10) 

( [ A I , ) +  = [ A I T .  (11) 

A@{12kt'-"} = A@{l"}. (12) 

recalling that under t 

For SO,,+, we have the equivalence 

The results for n 10 are collected together in table 2.  The symmetrised powers, 
up to power four, of the basic spin irreps of SO, with n 10 are given in table 3. 

Table 2. Antisymmetrised nth powers of the basic spin irreps of SO.(n 6 IO) .  

1 A +  
2 
3 
4 
5 
6 
1 
8 

A+ 

[A; 12]- 

[A;21]-+[A; 1'1- 

[A; 2l2]_+[A; 31, 

u 3 1  

[22]+[214]- 

1 2 ~ 1 ~ 1 -  + [3i21 

[ 41 + [ 233 + [ 3 131 

1 A 

3 
4 
5 
6 

2 [OI 

1 

8 [ O I  

A 

[A;  12]+[A; 13 

[A;21]+[A;2]+[A; 141+[A; 12]+(A; 11 

[131+[121 

[ 2131 + [ 143 + [ 221 + [ 21 ] + [ 21 

[2212]+[213]+[31*] +[31]+ [212] + [21] 
+ [ 131 + [ 1'1 
[A; ~ I + [ A ;  2 i 2 1 + [ ~ ; 2 1 1 + [ ~ ; 2 1 + [ ~ ;  1 7  

[4] +[313]+ [31*1+[31+[231+ [2213 +[223 
+[21']+[212]+[2] + [ I4]+[  131 +[ 1]+[0] 

+[A; I 2 ] + [ A ;  I ] + A  

3. Branching rules for subgroups of SO, 

Morris (1958, 1961) has given results for the decomposition of the basic spin irreps 
for the group-subgroup combinations 

S04n 2 SO2r x S o l s  

S 0 4 r s + ~ s  Sozr+i x SOZS 

S 0 4 r s + 2 r + 2 s + l =  SO2r+l  x SO2s+l 

while King (1975) gave equivalent results for the full orthogonal groups and for 
04rs 2 Sp,, x Sp,,. Black and Wybourne (1983) have also given results for a number 
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Table 3. Symmetrised powers of basic spin irreps of SO,. 

cA;-15]+ + [A;  1]+ 
[A;  l ']++[A; l ] + + A _  
[A; 121- 
[251+ + [2141+ + 121 
[23121++ [2141++ [2l2l+[l41+ 
[ 2 3 1 + [ 2 i ~ 1 + + [ 2 1 + [ 1 ~ 1 + [ 0 1  
[2212] +[212] +[14] + [12] 
[223+[214]- 

[OI 

[OI 

[131 + [ O l  
[ l 2 l+ [11  
[A; 13]+A 
[A;  12]+[A; l ] + A  
[A; l ] + A  
[z31+ [131 + [OI 
[ 221 ] + [ 2121 + [ 131 
+ [ I 2 ]  + [ I1  
P21 +[211+ PI 
+cl31 +LO1 
[212] + [21] +[ 133 

+2[12]+ [ l]  
PI +[131+ [I1 +LO1 

[141 + [ I1  + [OI 
[ I2]  + [ I1  
[A; 14]+[A; l ] + A  
[A;  13]+[A; 12]+[A; l ]+2A 
[A; 12]+[A; 11 
[24] + [213] + [2] + [ 141 + [ l ]  + [O] 
[231] + [ 22121 + [ 2131 + [ 2 121 + [ 2 1 ] 
+2[14] + 2[ 13]+ 2[ 123 + [l] 
[23] + [221] + [22] + [213] + [2] 
+2[ 141 +[ 13]+[ 11 +2[0] 
[22121+[2211+[2131+2[2121 
+ [21]+ [14] +2[13] +2[12] + [l] 
[22] + [213] + [21] + [2] + [ 141 

of subgroups for S 0 2 k .  King's results may be extended to the special orthogonal group 
SO,. For n = 2k it is necessary to make use of the theory of difference characters 
(Murnaghan 1983, Littlewood 1950, Butler and Wybourne 1969). In deriving our 
results we make extensive use of the properties of the infinite S-function series 
A, B, C , .  . . , defined elsewhere (Black et a1 1983). We use wg to denote the sum of 
parts of a partition (5) and use l+(l-) to stand for any S function with wg even (odd). 

The relevant results are collected together in table 4. The format of these tables 
follows that of Black and Wybourne (1983). The results for the decomposition of the 
basic spin irreps are of crucial importance in establishing our subsequent results. Note 
that in each case the embedding is specified by the assumed decomposition of the 
vector irrep [ 11. 

4. Branching rules for the extended D-dimensional Poincar6 supersymmetry 

The connection between Clifford and Lie algebras is well known. The Clifford algebra 
C k  contains the important Lie subalgebras 

Ck Z l  so2k+l so2k. 

The 2k-dimensional vector space on which C k  acts is irreducible under so,k+, and 
separates into two inequivalent 2k-1-dimensional irreps under S02k. The restriction 
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Table 4. Branching rules for SO,,. 

SO(4rs) j. Sp(2r) x sp(2s)  

[I1 
A 

A" 

S 0 ( 4 r s + 2 r + 2 s +  1)  4 S 0 ( 2 r +  l ) x S 0 ( 2 s + 1 )  

[I1 
A 

A" 

" 

0, 
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Table 4. (continued) 

SO(4rs+2s )  .1 S 0 ( 2 r + l ) x S O ( Z s )  

SO(4rs) 4 SO(2r)  x SO(2s) 

r11 
A 

A" 

0" 

U* 

S02k+l .1 S02k again leads to 

A .1 A + + A - .  (13) 

The irreps A, of S02k may be further reduced by the action of subgroups of S02k. 
Strathdee ( 1985) has shown that for the extended D-dimensional PoincarC supersym- 
metry the group-subgroup structure 

S02k 2  SOD-^ X K (14) 

is of special significance in determining acceptable light-like representations. The 
choice of K is dictated by D. The group K is the automorphism group (or bosonic 
little group) which treats the supercharges Qj( j  = 1, . . . , N )  as an N vector. 

We let Ql,2 represent a set of real supercharges with 2k real components. This set 
generates the 2k-dimensional Clifford algebra. The Ql,2 span the vector irrep [ l ]  of 
so,,. Under the restriction SOzk .1 SOD-2 x K they span the basic spin irreps of SOD-2 
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and the vector irreps of K. The relevant decompositions for the vector irrep [ l ]  of 
SOzk are listed in table 5 along with the relevant group-subgroup structures. 

The decomposition of the vector irrep [ l ]  of S02k fixes the group-subgroup 
embedding and leaves the corresponding decompositions for the basic spin irreps A +  
of to be determined. 

For D = 0,4(mod 8)  the required general result may be readily found by noting the 
equivalent group decompositions 

leading to 

Use may be made of (10) to restrict the values of s* < k Equation (16) simplifies 
for D = 4  and 8.  For D = 4  we have 



Extended Poincare' supersymmetry 201 1 

where no part of ( p )  exceeds N nor does the number of parts of ( p )  exceed 4 and 

{PlP2P3P4} {Pl -P4, P2-P4r P3-P4, O} P4 # 0. (19) 

The above restrictions limit { p }  to standard inequivalent irreps of SU4 involving not 
more than three parts which may be transcribed into the appropriate SO6 irrep labels 
using ( 7 e ) .  

Using the branching rules of table 4 together with the isomorphisms and auto- 
morphisms discussed in § 2 it was possible to obtain general results for D = 4 to 10 as 
given in table 6 .  Note that for D = 6 the summation Zsz,si is to be understood as first 
being made over ( s z ,  s;) and then over (sf ,  SI) while for Z s ~ , s ;  the sum is first made 
over (s:, SI) and then over (s:, s i )  where s:s n, and s L s  n- and as usual s+ refers 
to even integers and s- to odd integers. For D = 7  [ (A) ]  is first evaluated in Sp4 and 
then transcribed as a SO5 irrep label using ( 7 d ) .  Finally in the case of D = 10 we note 
the presence of the -" symbol which must be applied to each SO8 irrep that arises in 
the summations. The case of D = 9 can be found from those of D = 10 by making use 
of the fact that under SO, 3. SO,, A+ 3. A. Some detailed results are given in table 7. 

Table 6. Branching rules for the basic spin irreps of SOZk 1 SOD-, X K 

A- 

D=7 SO,, 

A* 

D=8 SO,, 

A* 

D =  10 SO,,,+, 

A* 

SO,," 
A* 

N = 2 n  

N = 2 n  

N = 2 n  

N = 2 n + l  
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Table 7. Branching rules for basic spin irreps for D = 5 to 10. 

D = 6  N = 2  SO, 
A+ 
A -  

N = 4  SO8 
A+ 
A- 

SO8 
A +  
A- 

N = 6  SO,, 
A+ 
A- 

so12 

A+ 
A- 

N = 8  SO,, 
A+ 
A- 

A+ 
A- 

so,, 
A+ 
A- 

A+ 
D = 7  N = 2  SO, 

A- 

N = 4  SO,, 
A+ 
A- 
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Table 7. (continued) 

N = 6  

N = 8  

D = 8  N - 1  

N = 2  

N = 3  

D = 9  N = l  

N = 2  

N = 3  

N = 4  

D=lO N = l  

N = 2  

A+ 
A- 

A, 

A 

S024 

A* 

A- 

A- 

1 so5 X SP, 

5- [A; 2](1)+[A; 12](13)+[A; 1](21)+A(2,1) 

1 so5 X sP8 

1 [31(0) + [211(12) + [21(2)+ [ l2I(2l2)+ [ 1 N 2 )  + [01(23) 

1 [41(0) + [313(12) + [31(2)+ [22](14) + [21](212)+ [21(22) + [ 12](2212) 
+ [ 1 10,) + [01(2~) 

1 [A;  3](l)+[A; 21](3)+[A; 2](21)+[A; 12](213)+[A; 1](221)+A(231) 
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Table 7. (continued) 

N = 3  so24 /SO8XSO3 
A +  
A -  

1 A-[4]+[A; 1]+[3]+[A; l2]_[2]+[A; 2]..[1]+[A; l 4 l - [ O 1  
1 [11[41+ [l31[31+ [211[21+[2131-[11 +[31[01 

1 (~241- + [41)[01+ [3l3l-([l21+ + [121-) + ([2’l2IL + [311)[21+ [221 
N = 4  SO,, 1SOaXSO4 

A+ 
([223++ [221-) +[2l21([31I,+ [311-)+ ([141-+ [21)[41 
+[141+([321++[321-) +[ l2l([42I++[42lL)  +[01([421+ +[4’1-1 

b- .1 [A; 213]-[1]+[A; 3]-[1]+[A; 21]-([21]++[21l-)+([A; I3]-+[A; 21,) 
[3] +[A; 12]+([32]++ [32]-)+[A; 11-([411+ +[411-) 
+A+([431++[431-) 

N = 5  SO4, 1 S 0 8 X S 0 5  
A+ J A+[42]+[A; 1]+[43]+[A; I2]-[42]+[A; 13]+[32]+[A; 2]-[41] 

+[A; 21]+[32]+[A; l4]_[4]+[A; 212]-[31]+[A; 22]-[221+[A; 31+[31 
+[A; 31]-[21] +[A; 2212]-[2]+[A; 313]-[ 12]+[A; 4]-[ I ] +  [A; 2‘]-[0] 

il- .1 [ 1][4*] +[1’][43]+ [21][42]+ [213]-[32] + [213]_[411+ [221][32] 
+ [3][4] +[312][31]+ [32][221+ [231]-[3]+ [32121-[211+[41][21 
+ [41’]-[12]+ [323]-[1]+ [ m o l  

Table 8. Decomposition of A, under SO2k .1 SODx4 x U, x K. 

2 k = +  2‘D-4’/2( N+ N-) 
D z  10 

2 k = +  2(D-4)’2( N+ N-) 
D z  14 
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The results in table 6 exhaust the possibilities for exploiting isomorphisms and 
automorphisms. For D = 0,4(mod 8) (16) gives the general result. For other values of 
D it is possible to make use of the group-subgroup structure 

The lower chain can be evaluated using first (5) and the properties of plethysm 
(Littlewood 1950, Wybourne 1970) to yield the results given in table 8. The principal 
difficulty in implementing those results is the evaluation of the relevant spin plethysms. 
Having obtained the results for the lower chain the irreps of SOD-2 x K that cover 
those of SOD-., x U1 x K can be found by the string method (Wybourne 1984). 

Specific results for D = 11 with N s 3 are given in table 9. For N = 2 the SOz 
non-scalar irreps are grouped in pairs as for 02. 

Table 9. Branching rules for the basic spin irreps under SO,,,v 1 SON x SO,, N = 1,2,3. 

D = l l  N = l  SO,, 
A+ 
A- 

N = 2  SO3, 
A, 

N = 3  SO,, 
A+ 

1 so9 
1 [21+[131 
1 [A;  11 

1 0 2  x SOP 
1 [0]([4] +[3l3l+[3121 +[31+[231+[2211+ [221+[2131+[2121 +[21 

+ [ 141 +[13]+[ 1]+[0]) 
+ [2]([312] +[311+ [2212]+ [2121 +[211+ [ I 3 ]  + [121) 
+ [4]([22] + [ 2 P ]  +[211 +[2I+[l41) 
+ [61([ 131 + [I2]) 
+ [81[01 

+[3]([A; 21]+[A; 2]+[A; l41+[A;  l 2 1 + [ A ;  11) 
+ [Sl([A; 121 + [A; 11) 

1 [ 1 ] ( [ A ; 3 ] + [ A ; 2 l 2 ] f [ A ; 2 1 ] + [ A ; 2 ] + [ A ;  131+[A; l21+[A; l ]+A)  

+ ~ 7 1 ~  

+2[312]+ [31]+2[231+ [22121 + [221 + [2131+ [2l+2[l31+ EO]) 
+ [1]([513]+[5]+[4221] +[4212]+[421] +[413l+2[4l21 +[41]+[3*21 
+ [3212] + [3221] +2[322] +2[3212] +2[321] + [321+ 3[3131+ [312] + [311 
+[3]+2[231]+2[2212] +2[2211+2[213] +3[2l2l+2[211 +2[14] +[123 
+ i l l )  
+ [2]([512]+[51]+[422] +[4212] +[421]+[42] +2[4131+[412]+[411 
+[4] +[3221]+[321 J +2[3221] +[322] 
+3[321~]+3[321]+[32]+2[313]+4[31’]+2[311+[241 + [231]+2[231 
+3[2212]+2[221]+2[22]+4[213] +2[212] +2[211+2[2]+[14] +2[ 133 
+[I2] )  + [3]([4212]+ [421]+ [413] +2[412]+ [41]+ [3?121+ [3’]+[323] 
+ [3221] + [3223 +3[3212] +2[321] +2[32] + 4[3131+ 2[3121 + 2[31] 
+2[3]+2[231] +[23]+3[22l2l+3[2211 +[22]+3[2l31 +4[2l2l+2[211 
+2[14] + [Pi + [123 + [ 13) 
+[4]([42]+[413]+[41]+ [4]+[321]+ [3221]+2[3212]+2[321]+[321 
+2[313]+3[312]+2[31]+[24]+[231] +[23]+3[22121+2[221] +2[22] 
+ 4[213] + 2[2121 +2[21] + 2[21 +[I41 +2[131 + [12N 

1 0 3  X so9 
1 [0]([6] + [512] + [422] + [42] + [413] + [4] + p3] + p 2 1 ]  + [3221] + [3212] 
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Table 9. (continued) 

+ [5]([3212]+ [321] + [32] + 2[313] +[312]+ [31] +[3] +[231]+2[22121 
+ 2[221]+[22]+2[213]+3[212] +2[21]+ 2[ 14]+[ 13]+[1’]+[ 11) 

+[2]+ [Pi+ 2[ 131 + [ 1 7 +  [O]) 
+ [6]([3 1’1 + [3 11 + [23] + [2212] + [221] + [2*] + 2[213] + [21’] + [21] 

+ [7]([213] + [21’]+ [21] +[ 141 +[12] + [ 11) 
+ [81([21+ [131) 

A -  1 [O]([A;413]+[A;4]+[A; 321]+[A; 312]+[A; 31]+[A; 221]+[A; 213] 
+[A; 212]+[A; 21]+[A; 2]+ [A; 14]+ [A; 12] + [A;  l l )  
+[ l]([A; 5]+[A; 412]+[A; 41]+[A; 41 +[A;  322]+ [A;  321l-C [A; 321 
+[A; 313]+2[A; 312]+2[A; 31]+2[A; 3]+[A; 2;]+[A; 2*1*] 
+2[A; 221] +[A; 2’]+ [A; 213] +3[A; 212] +3[A; 211 +2[A; 21 +[A; 141 
+2[A; 13]+2[A; 12]+2[A; 1]+A) 
+[2]( [A;412]+[A;41]+[A;4]+[A;  3212]+[A;321]+[A;32] 
+[A;313]+3[A;312]+3[A;31]+2[A;3]+[A;23]+[A;2212] 
+2[A; 221]+2[A;22]+2[A;213]+4[A;212]+4[A; 21]+3[A;2] 
+[A;  14]+3[A; 13]+3[A; 12]+2[A; l ] + A j  
+ [3]([A; 411 + [ A ;  41 + [ A ;  321]+ [A;  32]+ [A; 313]+ 2[A; 31’1 
+ 3[A; 3 11 + 2[A; 31 + [A;  23 11 + [A; 2212] + 2[A; 221] + 2[A; 2’1 
+2[A; 213]+4[A; 212]+5[A; 21]+3[A; 2]+2[A; 141+2[A; 131 
+3[A; 12]+3[A; 11) 
+[4]([A;32]+[A;313]+[A;312]+2[A;31]+2[A;3]+[A;2212] 
+[A; 221]+2[A; 22]+2[A; 213]+3[A; 212]+4[A; 211 
+3[A; 2]+[A; 14]+3[A; 13]+3[A; 12]+2[A; l ]+A)  
+ [5]([A; 311 + [ A ;  3]+ [A;  221] +[A;  2’1 + [ A ;  21 ’1 + 21.1; 21’1 
+3[A; 21]+2[A; 2]+[A; 14]+2[A; 13]+3[A; 12]+2[A; l ] + A j  
+[6]([A; 21’]+2[A; 21]+[A;2]+[A; 14]+[A; l7I+2[A; 12]+2[A; 11 
+ A )  
+[7]([A;2]+[A; 13]+[A; l‘]+[A; 1]+Aj 
+ [81[A; 11 

5. Conclusions 

The branching rules for several important subgroups of SOzk have been obtained in 
a compact form using properties of Schur functions. The relevant rules that arise in 
the determination of light-like representations from extended PoincarC supersymmetry 
have been given in a form that readily allows extensions to higher helicity states if 
required. 
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